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Symmetry-adapted functions (orthonormal linear combinations of angular-momentum 
eigenfunctions belonging to particular symmetry species) for the Ta and Oh point groups 
have been computed for J < 100 using an algorithm of Fox and Oxier, and Cholesky 
factorization of idempotent matrices. The results of Cholesky factorization are compared 
with those of both symmetric elimination with pivoting and an EISPACK diagonallzation 
routine. 

1. INTRODUCTION 

The knowledge of linear combinations of angular-momentum eigenfunctions which 
transform according to the irreducible representations (h-rep’s) of the cubic (tetra- 
hedral Td and octahedral 0,) point groups is becoming increasingly important. 
These symmetry-adapted functions (SAF’s) were constructed for Td by Bethe [l], 
Jahn [2], Hecht [3], and Moret-Bailly et al. [4] for values of the angular-momentum 
quantum number J < 21. Fox and Ozier [5] developed an explicit algorithm for 
constructing Td harmonics for arbitrary J. & that procedure the SAF’s are among 
the eigenvectors of symmetric idempotent projection-operator matrices. Application 
of Cholesky factorization to construct a complete set of orthonormal eigenvectors 
was discussed by Householder and Fox [6]. The present work expands the theoretical 
developments of Fox and Ozier [5] to incorporate the Oh point group. The methods 
of [5, 61 are implemented to compute SAF’s, or “cubic harmonics,” for J up to 100 [7]. 

The group-theoretical approach here is in the same spirit as that used earlier [5]. 
Conventions for labeling coordinate systems, variables, group representations, etc., 
are identical to those in [5] unless explicitly stated otherwise. 
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TABLE I 

Symmetry Operations of the Point Group Oh with Corresponding Permutations of the Group S(6) 
and Euler Angles 
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Oh is the symmetry group for molecules like SF, , just as Td is for molecules like 
CH, . The symmetry operations of Oh are listed in Table I, which corresponds to 
[5, Table I]. The proper rotations are numbered l-24 and are denoted here by 
{,Sj , 1 < j < 24); the improper operations are numbered 25-48, and are {IS, G Sj+24 , 
1 < j < 24}, where Z is the inversion. Those operations common to both Oh and T, 
are (Si , 1 < j < 12 and 37 < j < 48). In Table 1 all of these operations for Oh 
appear in the same order as those for Td (in [5, Table I]), except S,, and S,, here are 
interchanged. The purpose of this interchange is to cause the three sequences of 
operations, 37-40 (where the x-direction is unique), 41-44 (where y is unique), and 
45-48 (where z is unique) to be completely analogous to each other in both Tables I 
and III. (The sequences 13-16, 17-20, and 21-24 are also completely analogous.) 

t 

Z' 

b 

* Y’ 

FIG. 1. Orientation of a regular tetrahedron with geometric center at the origin of Cartesian 
axes (x’, Y’, Z’), and vertices at positions a, 6, c, and d (analogous to positions 1,2, 3, and 4, respec- 
tively, in [5, Fig. 11); labels 1-6 here refer to B positions in an octahedral AB, array, with A at the 
geometric center. 

There is a slight change of notation between Fig. 1 and Table I here, and [5, Fig. 1, 
Table I]. Our labels a, b, c, d refer to the main diagonals passing through the vertices 
at positions 1, 2, 3, 4, respectively, in [S, Fig. 11. The correspondence between the 
symbols for operations is as follows: C,, = Csn , Ca2 = Csb, etc., and ~~~ = oae, 
%4 = abd , etc. (In the a-operations the subscripts define the plane of reflection.) 
A new notation for the C, operations {Sj ; j = 13, 14, 17, 18,21, 22) has been 
introduced: the axis of rotation is in a plane specified by the two literal subscripts. 
For the symbols with a single-prime superscript, the axis of rotation is in the first and 
third quadrants of that plane; for those with a double-prime superscript the axis of 
rotation is in the second and fourth quadrants. The elements of the permutation 
group S(6) corresponding to Oh are listed explicitly. The Euler angles measured in the 
molecule-fixed frame (MFF) are specified as in [5]. 

For completeness we tabulate the operations for the cubic subgroups of O,& . In 
Table 11 the sets of operations in each subgroup are indicated by a 1/. 

Before turning to the actual calculation of SAF’s for Oh , we wish to consider the 
matrix representations of Td and Oh . In particular we demonstrate a generalization 
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TABLE II 

Symmetry Operations in Cubic Point Groups; Presence is Denoted by 4 

Irreducible Representation Matrice+* of O& 

1 2 3 4 

25 26 27 28 

A IIT 1 

A !m 1 

E, 
1 0 ( 1 0 1 

F,, XYZ XYZ 8Y.z RYZ 

F20 XYZ XYZ RYZ mz 

- 

13 14 15 16 

37 38 39 40 

Al, 1 

A 28 -1 

E? ( 
cos 2~ sin 2~~ 
sin 2~ --cos2~~ 1 

6, XZY XZP XZP XZY 

F2, XZP XZY ZZY Lci-Y 

5 6 7 8 
29 30 31 32 

1 

1 

( 
-$ (3)'le/2 
-(3)"*/2 -* 1 

YZX YZX YZY YZX 

YZX Yz8 YZX YZX 

17 18 19 20 

41 42 43 44 

1 

-1 

( 
cos 2r, sin 2~~ 
sin 2~~ -COS2Ey 1 

ZYX ZYX ZYX ZYX 

ZYX ZYX ZYX ZYX 

9 10 11 12 

33 34 35 36 

1 

1 

( &2 1 -(3)'/"/2 1 -4 
ZXP ZXY ZXY ZXY 

zm ZXY ZXY ZXY 

12 22 23 24 

45 46 47 48 

1 
1 

( 
cos 2~~ sin 2~~ 
sin 2~ -cos2e, 1 

YXZ YX.2 YXZ Yxz 

YXZ YXZ YXZ YXZ 

a Irrep’s for the five u-species are given as follows. For proper operations (l-24) the representa- 
tions are identical to these matrices. For inversion operations (25-48) the representations are the 
negatives of these matrices. 

b Primes are eliminated from X, Y, and Z for convenience, but their meaning is the same as x’, Y’, 
and Z’ in [5, Table II]. 
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of [S, Table II]. These results will be useful, not only in the present work, but in future 
computations of vibration-rotation spectra of molecules with cubic symmetry. 
0, has 10 irreducible representations: A,, , A,, , E, , F,, , F,, , Al, , A,, , E,, , F,, , 
and Fzu. The corresponding matrix realizations are presented in Table III. The 
enumeration of operations of the group is given in Table I. We have organized the 
operations of Oh into blocks of eight, instead of into classes, in analogy to [5, Table II]. 
These arrays, which consist of the invariant subgroup (& ; ,j = 1, 2, 3, 4, 25,26,27,28} 
and its five cosets, form a compact display and facilitate the calculation of the cubic 
harmonics. 

Table III contains the representations of type g explicitly. For the u-species the 
matrices are identical to those for g for proper operations {Sj , 1 <<j < 24}, but are 
the negatives of those for g for the improper operations, (Sj ,25 < j < 48). In the 
threefold representations the meaning of X’Y’Z’, etc., is the same as in [5, Table II]. 
For example, 

0 
s,, is s,,, w (X’Z’ Y’) N (-i 9 -1) 

0’ 
(1) 

as in [5, Eq. (9)]. 
In the present work we have introduced the parameters E, , with a: = x, y, or z, 

where Ed is an arbitrary angle, 0 < Ed < 2n, and where ey = E, + &T and E, = 
E% + $r. The parameters E, , l y , and E, are identical, [8a] respectively, to c1 , Ed , 
and Ed given by Shtier, Nielsen, and Thomas [8b] following their Eq. (7). We have 
used q, and qs defined there in terms of the E’S to generate our representation 
matrices of species E, and E,,. The E, rep transforms into the E rep of [5] for the choice 
E r = 30”. In this case the roles of q, and qe in [8] are played by 

p = ($y2(x’* cos E, + Y’2 cos Epl + 2’2 cos EJ 
(24 

= 2-l/*(x'2 _ Y'2) 

and 

f?) = ($)1’2(X’2 sin E, + Y’2 sin cy + Z’2 sin EJ 
CW 

= 6-‘/2(X’* + y’2 - 2Z’5’), 

respectively, in [5]. The choices of basis functions for generating the E reps corre- 
spond to E, = 30” in [2, 3, 51, and to Ed = 120” in [4]. It appears that E, = 30” is 
related to standard forms [9] of the spherical harmonics YM’ for J = 2. The E rep 
in which E, remains arbitrary enjoys a certain amount of flexibility, which will be 
utilized in future applications. 

We now turn to the correspondence between the projected functions in 01, and T, . 
In [5] it was shown that the projected spherical harmonic, 
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where k indicates the symmetry species and p specifies a row of the representation, 
is given by the expression, 

with 

fp’ = (&/It) c PY$ ) 
K’ 

(44 

where all symbols are defined in [5, Eqs. (l)-(7)] except that GBi I K (a’ fi’y ‘) here replaces 
HKSK(a’fl’y’) for clarity. 

Two properties of the Td and OA point groups are noted for the discussion which 
follows: 

(i) Each operation in T, corresponds to a pair of operations in Oh, such that 
one of the pair is identical to the operation in Td while the other is equivalent to the 
first one followed by inversion. 

(ii) For the operations common to T, and Oh, the reps in Td are identical to 
the reps in the g-type species of Oh , provided that the values of the phase E, for the 
reps of species E are coincident. 

For the Td point group, Eq. (4b) may be written in the form (see Table II) 

(Td),(k) 

= 27 

D’“‘(s)~u9;~I[(ayy’) 

1 

For the Oh point group, Eq. (4b) becomes (see Table II) 

+ 1 [dkm”(s>,*, + (- l)J dkm”(zs>,*] .&K(dj?f), 
s&v2 

(W 

(W 

where k’ represents one of the symbols A,, A, , E, Fl , or F, for Oh (as k does for Td) 
and the subscript m in km’ indicates g or u. 

Defining 

&m) = ]+y 
if m=g 
if m = u, 

we have, for each proper operation {& ;.j = 1,2,..., 24) (see Table III) 

+“(q*, = +‘ys)*, 

and 

D’“J(ZS)~~, = (- l)f(m)@,‘)(S)*u 

(6) 

(W 

VW 
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where TV’ need not equal p. Substitution of Eqs. (7) into Eq. (5b) yields 

(O*)$,‘) = [l + (-l)J+f(+-) 
I [,zcy 

D’“I”(S),*,~~,,(~‘~‘Y’) 
1 

The factor [ 1 + (- I)J+E’m) ] permits only projected functions of type g when J is 
even and only functions of type u when J is odd. 

Comparison of Eqs. (5a) and (8) and use of property (ii) shows that, in either 
nonvanishing case (where one has (- I)’ = (- l)E’“)) it follows that 

(Oh),.(k,‘) _ 2 @d)?(h) when k’ = k. (9) 

As there are twice as many operations in 0, as in Td , the expressions for t*h’fFm” and 
od)fr) become identical, as do the expressions for “partner” functions. Therefore, 
calculations of the SAF’s for Td simultaneously produce the SAF’s for 0, . Hence- 
forth we shall refer to these SAF’s as “cubic harmonics,” and omit the subscripts g 
and u in the irreps of Oh . 

In Section 2 we give the techniques which we have employed in the numerical 
computation of the cubic harmonics. The results, their systematics, and comparisons 
with respect to different routines for matrix diagonalization are presented in Section 3 
and Appendix A. New applications of high-J cubic harmonics are discussed in 
Section 4. Finally, some properties of the &,,(77/2) which are useful in their numerical 
and algebraic [IO] calculations, are given in Appendix B. 

2. TECHNIQUES AND CALCULATIONS 

By means of the algorithm of [5], the normalized cubic harmonics have been 
constructed [7] to span the subspace [J, k, ~1 [l l] of each symmetry species k and 
partner it-rep CL, for each integral value of J from 0 to 100. 

It is appropriate to emphasize here the important consequences [5] of Jahn’s use of 
restrictive elementary combinations of spherical harmonics YKJ. First, we have the 
definitions [2] 

UKJ = 2-y Yf, + (- l)“Y,J], (104 

u,” SE WJ = y,J, (lob) 
and 

VKJ = -42)~1’7 Y”, - (- l)KY,J], (1Oc) 

where K > 1. Then the molecular Hamiltonian of cubic symmetry does not connect 
U-type functions with V-type functions [5]. Second, we may consider separately 
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the two sets of functions with K = 0,4, 8 ,... and K = 2, 6, 10 ,..., as these are not 
mixed by the Hamiltonian [5]. 

Starting with one of the four restricted bases, 

(iJKJ, K = 0, 4, 8 ,... }, {V,“, K = 4, 8, 12 ,... }, 

{iJKJ, K = 2, 6, 10 ,... }, {VKJ, K = 2, 6, 10 ,... }, 
(11) 

one constructs [5] cubic harmonics which belong, not only to a unique symmetry 
species, but also to a particular row of the representation. Thus the SAF’s of species E 
emerge in two sets denoted by the labels (E, , E,), and those of species Fl and Fz are 
produced in three sets, (FIB , Flz:, F,,) and (F,, , F,, , F,,). Each SAF in the &-set has 
a unique partner in E, ; each SAF in the F,,-set has a unique partner in each of F12: 
and F,, (similarly for F,,). Furthermore, the two sets of SAF’s for species E are 
mutually orthogonal, as are the three sets of SAF’s for species Fl and Fz, and each 
set forms an invariant subspace with respect to the Hamiltonian (e.g., wavefunctions 
belonging to Fzz do not mix with those belonging to Fzz). Finally, in the present 
procedure, the SAF’s belonging to the subspaces Flz, E;, (Fgz, Fzar) are constructed 
from either UKJ’s or V/s with odd values of K as determined by application of the 
transfer operator [5] to the even-K SAF’s from the subspace F,, (F,,). 

All of the cubic harmonics calculated here, except those belonging to irreps I;,, 
and F,, , require [5] knowledge of the functions d&,(/3) evaluated at p = 7r/2; their 
computation is discussed in Appendix B. In particular, for irreps A, , A, , and Eel1 
one constructs symmetric idempotent matrices of the projection operators according 
to [5, Eqs. (53)-(58)]. The eigenvalues of these matrices are either +l or 0 (because 
of idempotence). The eigenvectors belonging to the subspace of the degenerate 
eigenvalue +1 consist of the coefficients ciK which define the SAF’s that span the 
subspace [J, k, p]: 

@p = C &UKJ or .y = c &JfKJ. (12) 
K K 

In general, when the SAF’s are not subjected to further conditions, they are not 
unique. However, any two sets of orthonormal SAF’s that span the same space 
[J, k, ~1 are related by a unitary transformation. 

In the present work, the idempotent matrices were decomposed by Cholesky 
factorization [6, 121. If A is a real symmetric positive definite matrix, then its Cholesky 
factors [12] determined without pivoting are triangular matrices which satisfy the 
equation 

A = AT = LLT, (13) 

where L is a lower triangular matrix. If A is n x n and, e.g., n = 4 with 

A=(:$$:) and L=(b?YJ Q4) 
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then one has [12] 

111 = (a1W2 
12, = a2dlll 
Ial = aalllll 

4, = adll 

lz2 = (azz - li$” 

4, = (a,, - &l121Y122 Ia, = h3 - 12 - 13 (15) 
Id2 = h2 - h1~21Y122 4, = (aJ3 - Ma1 - b2132Y133 

I,, = (ad4 - ltl - l,“, - l&J1J2. 

In our work, however, each matrix is not positive definite, but idempotent (and, 
therefore, positive semidefinite), whose rank r is the multiplicity of the eigenvalue + 1. 
Consequently [13,14] one expects the above procedure to be inapplicable because it 
does not involve a search for the largest diagonal element and an interchange of 
appropriate rows and columns before each step: one might encounter a singularity 
due to a zero diagonal element in L or a column that is linearly dependent on previous 
columns (or nearly so), before reaching the end of r “good columns.” However, 
the difficulty appears to be avoidable in this problem if we arrange our matrices in 
a particular way (see Section 3), so that we are able to perform the above Cholesky 
factorization without pivoting. We have not fully investigated the reasons why pivoting 
is not necessary. Moler and Stewart [14] have analyzed the effects of roundoff error 
in this algorithm, and have shown that if the diagonal elements of the computed L 
are not too small, then the columns of L must be close to orthogonal and AL must be 
close to L. (Specific examples and further discussion are given in Section 3.) 

The above procedure yields a trapezoidal matrix L of r columns with r < n, 
because Ir+l,r+l = 0. The r columns thus determined comprise all of the eigenvectors 
of A with eigenvalue + 1, and they are orthonormal [6]. Four equations which apply 
to A and its eigenvectors are 

A2 = A, Wa) 

A = LL=, Wb) 

AL = L, ow 
and 

LTL = I, (164 

where Eqs. (16~) and (16d) are implied by Eqs. (16a) and (16b); here I is the r x r 
identity matrix. 

The following symmetric idempotent matrices have been constructed from [5, 
Eqs. (53)-(58)]; their eigenvectors, given below, corresponding to the eigenvalue + 1, 
are SAF’s for their respective subspaces [l 11: 

K= 2 6 

K’ = 2 5116 
( 551ja/16 

551J2/16 
11/16 ) [J = 6 6, Eel, (1% 



(17’9 

K= 4 8 

K'= 4 17124 -(7 * 17)1/2/24 
8 ( -(7 - 17)1/2/24 7124 ) [J 9, A213 = 

K= 0 4 8 

K'= 0 33164 (7 - 11)lj2/32 (5 - 1 I - 13)112/64 
4 i (7 . 11)‘j2/32 7148 (5 * 7 . 13)‘i2/96 [J = 8, A,], (17~) 
8 (5 - 11 . 13)li2/64 (5 . 7 . 13)li2/96 651192 

K= 4 8 12 16 20 

K'= 4 
8 

12 
16 
20 ( -0.175644 -0.240371 0.507050 0.066790 0.396056 -0.183236 -0.240371 0.263113 0.662923 0.250746 -0.175644 0.366114 0.384201 0.049718 0.263113 -0.183236 0.779134 0.066790 0.366114 0.002895 0.002895 0.396056 0.049718 0.666692 0.250746 1 

[J = 21, E,]; (174 
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Rank = No. 
Example Subspace Order of SAF’s SAF’s 

(174 [6 El 2 1 (5/16)112 U26 + (11/16)‘/” U,” 
t17b) [9, 41 2 1 -(17/24)1/2 Vd8 + (7/24)‘j2 Vs8 

(17c) P3,41 3 1 (33/64)'Wo8 + (7/48)'/2U,8 + (65/192)1f2U88 
(17d) [21, EB] 5 3 See Eqs. (18) and (19) 

In examples (17a)--(17c) where the rank is 1, each SAF is unique and is in agreement 
with the results of Jahn [2] and Moret-Bailly [4], except possibly for an overall phase 
factor. When the rank exceeds 1, the eigenvectors are not unique. In example (17d), 
Cholesky factorization yields the (orthonormal) eigenvectors 

@We - 0.712074 Vi'- 0.337565 V,"'- 0.246666 V,",' 1- 

+ 0.093797 V,",'+ 0.556200 V;', 

@p$*Ee = 0.740927 Vi'+ 0.242733 V,",'- 0.204573 V,",' 

+ 0.591826 Vi;, 

@9”1*E* = 0.514235 V;"2'+ 0.853514 V,z,l+ 0.084120 V& (18~) 

On the other hand, reflection of the matrix (17d) about the second main diagonal 
(i.e., the diagonal running from the lower left to the upper right), and Cholesky 
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factorization of the result yields the following set of orthonormal eigenvectors: 

@%Ee 1 - - 0.816512 V;;+ 0.003546 V.;+ 0.060890 V,",' 

+ 0.307094 Vi'+ 0.485058 V,"', (194 

@;W = 0.882679 V;;+ 0.414531 V-f;- 0.208825 Vi1 

+ 0.073719 vf, Ugb) 

@13, - 3 - 0.456790 V;;+ 0.724575 V,"'- 0.516076 I',"? (19c) 

As these two sets of orthonormal basis vectors in Eqs. (18) and (19) span the same 
subspace, they must be related by a unitary transformation. In fact, we have explicitly 
that 

0.681190 0.724822 0.103023 
0.103527 -0.234676 0.966545 (20) 

-0.724751 0.647735 0.234898 

We also have verified that all of the matrices and SAF’s of examples (17a)-( 17d) 
satisfy the matrix equations (16a)-( 16d). 

3. RESULTS, SYSTEMATICS, AND COMPARISONS WITH OTHER METHODS 

A computer program is available [7] which calculates SAF’s for arbitrary values of 
J, symmetry species, and partners. It incorporates the recursion formula for d&,(77/2) 
and the algorithm for cubic harmonics of Fox and Ozier [5], and Cholesky decom- 
position [6] (as discussed above) of the idempotent matrices generated by the algorithm 
for species A, , A, , and E, . Presented as an example in Table IV are all of the SAF’s 
computed for each subspace associated with J = 14, and in Table V are two sets of 
SAF’s belonging to the subspace [J = 100, A2], as determined in double precision 
(relative accuracy = 5.0 x 10-2s) on the CDC 6600 and 7600 computers at Los 
Alamos. Table V gives the SAF’s for the two “arrangements” of the same idempotent 
matrix, one with the lowest value of K in the first column and the other with the 
highest value of Kin the first column; the two sets are analogous, respectively, to the 
Qii and the 0, of the previous Section. 

It is evident that at high J the coefficients CiK in a particular SAF generally do not all 
have the same magnitude, but suffer extreme variations, especially when the “high-K” 
SAF’s are determined first; solutions with such peculiarities are found to obey Eqs. 
(16c,d) satisfactorily in double precision. However, the “arrangement” of the matrix 
(with respect to reflection across the second main diagonal as discussed in Section 2) 
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does affect crucially, as follows, the accuracy of the calculated SAF’s with J near 100 
(for J even or odd): 

Spec. \ 

Arl-. High Kin Low K in 
upper left upper left 

26 significant 
figures 
Poor 

Poor 

26 significant 
figures 

This diagram indicates several facts. First, one can use Cholesky factorization without 
pivoting to obtain a set of SAF’s for each value of J, and symmetry species Al , A, , 
and E, , because at least one arrangement of each idempotent matrix always yields 
a basis set of SAF’s with very little loss of accuracy. Second, despite the fact that 
Cholesky factorization without pivoting cannot be applied generally to positive 
semidefinite matrices [13], we have found specific examples of such matrices that can 
be so decomposed. Our matrices are idempotent, constructed from known formulas 
[5], and “arranged” as specified above. Third, the deficiency due to the absence of 
pivoting is manifest in the excessive losses of accuracy that occur during decomposition 
of our matrices in their “poor arrangements.” More specifically, we calculated the 
inner product (4i * mj) for each pair of SAF’s to test their orthonormality (Eq. (16d)), 
and the vector difference X = (A*# - *J to verify that each SAF is an eigenvector 
of A corresponding to the eigenvalue + 1 (Eq. (16~)). For the “poorly arranged” 
matrices we found that, as ai and 9, were generated progressively later during the 
Choleskyfactorization (i.e., as i andj approached r, the rank of the matrix), the values 
of (mi . 4,) (for i # j), and of the components of Xi , increased rapidly in size and 
indicated unacceptable magnifications of round-off error. For J = 100, in a “poorly 
arranged” matrix, typical indications for the SAF’s arm1 and 9, , determined last, 
are that I(@,.-1 * cP+)l is about 10-1s-10-17, that 1 - #v + 9 is about lo-ls, and that 
components of X, can be as large as 1O-21 in magnitude. (‘&is to be compared with 
the observations that ](O,-, * @,.)I and components of X, are about 1O-26 for the 
“good arrangements.“) Although such losses of accuracy are not critical to double- 
precision computations, they can alter most, if not all, of the significant figures in 
single precision. 

Other methods of decomposition of the idempotent matrices were tested to compare 
their times of execution and accuracies with those of the “good arrangements” in 
Cholesky factorization. A routine employing symmetric elimination of rows and 
columns, including a search for the largest diagonal element and pivoting before each 
elimination, was written by Moler [15] for our use. We also have employed the 
EISPACK routines [16] “TKEDT and “IMTQL2” which contain the intermediate 
step of tridiagonalization before diagonalization. These methods are discussed in 
Appendix A, and the results are compared in Table VI. We attribute the short 
execution times for Cholesky factorization to the absence of pivoting; because this 
absence does not cause appreciable extra losses in accuracy, we surmise that the 
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“good arrangements” of the idempotent matrices are already nearly optimally 
pivoted. The iterative procedure of “IMTQL2” gains still more accuracy, but requires 
considerably more time. 

TABLE VI 

Comparative Statistics for Three Methods of Decomposition of Symmetric Idempotent Matrices 
during Computation of SAF’s for J = 100 

Test 

Symmetric Tridiagonalization 
Cholesky factorization elimination (QR) and 

without pivoting with pivoting diagonalization 

A, -4 Ee A, A, E, A, A, Ee 

Time of execution” (msec) 7.1 6.1 9.7 22.0 19.2 25.8 248.9 218.2 169.3 

Max[l - ‘4i * ei] x 10z8 c 140. 170. 320. 200. 270. 190. 23. 19. 40. 

Max[l ai . aj I] x lo** c 19. 17. 50. 58. 76. 72. 2.3 1.8 2.9 

Max[l AQi - *$ I] x lo”-* C,d 79. 63. 80. 73. 88. 61. 43. 35. 25. 

a The “good arrangement” of each idempotent matrix, as discussed in Section 3, is always taken. 
L Each time interval represents an average value for 10 runs through the routine that decomposes 

the matrix; all tests of the time were made on the same CDC 7600 computer at LASL. 
c It is important to note that these entries indicate roundoff errors that accumulate both during 

computation of the eigenvectors ai and during the arithmetic required to conduct the tests. 
d These values indicate the absolute value of the largest component that occurs in all of the vector 

differences in each subspace. 

4. APPLICATIONS OF HIGH-J SAF’S 

Methane is a significant constituent of the atmospheres of the outer planets (AOP), 
and the stratosphere of the Earth [ 171. Enormous quantities of CH4 present in AOP 
suggest that absorption features arising from vibration-rotation transitions in the 
infrared will be important [18] out to J near 30 for the strong fundamentals vQ and v, . 
Appropriate laboratory spectra, requiring very long effective absorption paths and 
low temperatures, are not yet available. Consequently, spectral line positions and 
intensities have been calculated, and corresponding planetary spectra have been 
synthesized [18] for 0 < J < 30 in vs and vq of CH, . In that work, the theoretical 
formulation of Moret-Bailly et al. [4, 191 was applied, and tetrahedral splittings were 
computed using Dang-Nhu’s program [20] for F-coefficients. 

Vibration-rotation spectra of molecules like SF, with octahedral symmetry appear 
to be similar to corresponding spectra of tetrahedral molecules like CH, . The 
theoretical bases for these similarities are well established [4, 191. Recently, an 
ultra-high resolution spectrum of the infrared-active fundamental v, of SF, was 

58r/25/4-7 
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obtained [21], and a preliminary analysis was made 1211 for 0 < J < 20. Similar 
spectra, of even higher resolution [22], were unraveled [23,24] to determine the 
quantum numbers of absorption transitions in SF, which corresponds to emission 
in the 10.6-pm region by a CO, laser. Infrared transitions involving J < 60 in SF, 
were identified in this application. 

From a purely abstract viewpoint, it is intriguing to study the systematics of the 
coefficients [4] FL:::) used in analyses of high-resolution vibration-rotation spectra 
of spherical-top molecules. These coefficients have been calculated for 2 < J < 100 
[25] and remarkable regularities have been found [26]. This problem is part of an 
extensive theoretical program to analyze ultra-high resolution infrared spectra of 
molecules like SF, and CH, [27]. 

APPENDIX A: METHODS,OTHERTHANCHOLESKYFACTORIZATION,FORDETERMINING 
THE EIGENVECTORS OF A SYMMETRIC IDEMPOTENT MATRIX 

1. Symmetric Elimination with Pivoting 

The following procedure (and its implementation), written by Moler [15], permits 
a search for the largest diagonal element of A (and an interchange of rows and 
columns) before each elimination of a row and column, so that round-off error [14] 
is acceptably small. The matrix remains symmetric after each complete elimination. 

Let A be a symmetric idempotent matrix and let Y be a nonsingular matrix such 
that 

YTAY = D, (A.11 

where D is a diagonal matrix with no negative elements. Then 

or 
A 

where 

As Eq. (A.3) is of the form 

= ( y=)-1 D y-1 z.z (y-l)= D y-1 64.2) 

A = Z’p8=, 64.3) 

2 = (y-l)= DW. (A.41 

PAP= = LL= (A-5) 

[6, Eq. (2)], with P = I, it follows that 

F-2 = z (‘4.6) 

(i.e., the nonvanishing columns of 9 are orthonormal) and that 

A?Z=l.s (A.7) 
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(i.e., the nonvanishing columns of ZZ’ are eigenvectors of A corresponding to the 
eigenvalue + 1). 

We determine YT by a succession of I eliminations of a row and a column (where T 
is the rank of A and n is the order of A). In matrix notation this is written 

A,, = A, (A.8) 

Al = MIAoM;l, (A.9) 

A, = M2A1Mi1, (A.lO) 

D = A, = M,AT-lM;l, (A.ll) 

and 
Y’ = M,M,-, a.. Ml, (A.12) 

where each Mj , 1 < j ,< r, is selected to eliminate the row and column corresponding 
to the largest diagonal element alnm in Ai-l . Mj is n x n and has the form 

i 0 6 6 1 . . . . 0 0 0 1 . . . . . ..* . *.. . . . . 

and M;l has the form 

--almlamm 
- a2&,, 

I 

-anmlamm 

. . . 0 

. . . 0 . 

. . . 0 

. . . :I i 

1 0 0.. a,,/a,, *a- 0 
0 1 *a* a,,/a,, -** 0 . . . . 

6 fj . . . . . . 

. . . . 
6 0 i 1 (j i *-* anm/amm *a* 1 

Finally, Eq. (A.4) becomes 

(A.13) 

(A.14) 

3 = M,-liM,l . . . M,-lD1/2. (A.15) 

For example, applying this procedure to matrix (17d) of Section 2 we find 
successively 

0.501325 -0.224663 -0.207029 0 
-0.224663 0.619830 0.349215 0 

A, = -0.207029 0.349215 0.212165 0 
0 0 0 0.779134 

0.395808 0.251427 0.048357 0 
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0.266334 -0.373935 -0.235739 0 0 
-0.373935 0.525009 0.330978 0 0 

A, = -0.235739 0.330978 0.208657 0 0 
0 0 0 0.779134 0 

0 0 0 0.66668 

and 

0 
0 

A, = 0 
0 
0 

with 

0 0 0 0 
0.525009 0 0 0 

0 0 0 0 
0 0 0.779134 0 

‘I/ (A.17) 

0 0 0 

-0.003716 1 

(A.19) 

(A.20) 

(A.21) 

and 

(K’ = 4) 0 -0.516075 0 0.075667 0.484758 
(8) 0 0.724575 0 -0.207589 0.307930 

2= (12) i 0 0.456789 0 0.414773 (A.22) 
(16) 0 0 0 0.882686 0 
(20) 0 0 0 0.003~80 0.816505 

The three nonvanishing columns of P? must be related to (@>i ; i = 1, 2, 3) and to 
{Oi ; i = 1, 2, 3) of Section 2 by unitary transformations. 
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2. Tridiagonalization followed by Diagonalization 

The program TRED2 [16] which incorporates a series of orthogonal transformations 
according to Householder [16], has been employed to reduce our symmetric idem- 
potent matrices to symmetric tridiagonal form. Because the eigenvalues $1 and 0 
occur with respective multiplicities r and (n - r) that generally exceed 1, we expect [13] 
the tridiagonal matrix to be fractured by a number of zeros that occur on the sub- 
diagonal: if the multiplicity of an eigenvalue is p, then there must be at least ( p - 1) 
vanishing subdiagonal elements, so that at least p separated matrices occur along the 
diagonal. The following tridiagonal matrix emerges after application of TRED2 to 
matrix (17d) of Section-2: 

I 
0.666692 -0.471396 

-0.471396 0.333308 

! 
-------------- 

0 0 
0 0 

0 0 I 0 
0 0 0 

-------_--- 

0.955602 0.205977 1 0 
0.205977 0.044398; 0 
-_----_---_ /_- 

0 0 I 1 I* 
(A.23) 

In all of the examples that we have seen, the number of subdiagonal zeros is (p - I), 
where p = max[r, (II - r)]; the separated matrices are always 2 x 2 or 1 x 1, and 
the number of 2 x 2 matrices is min[r, (n - r)]. 

These tridiagonal matrices are diagonalized by the routine IMTQL2 [16], which 
is based on the QR algorithm [13]. Each 2 x 2 matrix is reduced to the form 

1 0 
( 1 0 0’ (A.24) 

Final eigenvectors are columns of the accumulated product of the successive ortho- 
gonal transformations performed in TRED2 and IMTQL2. The combined package 
yields a complete set of orthonormal eigenvectors for the subspaces corresponding 
to both eigenvalues +l and 0, but only those belonging to the subspace of +I relate 
to the present problem. 

APPENDIX B: PROPERTIES OF d&,(r/2) 

In the construction of “cubic harmonics” or SAF’s, the matrix elements of the 
finite rotations [9,28] for an angle rr/2 play an essential role. In the present work, as 
in [5], we follow the phase convention of [28], namely, 

di,&l) (here and in [28]) = (- l)K+Kh$K(p) [91. 03.1) 

From known recursion formulas for the hypergeometric functions [29], a variety 
of useful recursion relations can be found [5, 30-351 for the d$,&l), because these are 
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simply related to the Jacobi polynomials [9]. For p = 7r/2, [5, Eq. (64)] (also, see 
[32, Eq. (A.5.10)]) reduces to a particularly convenient recursion for numerical 
calculation of d&, with .I fixed [36]: 

(J + K + 1)1’2(J - K)1’2d;,cK+1j - - - 2K’d& 
03.2) 

-(J - K + 1)1’2(5 + K)1’2djEyK-1) . 

With this recursion, it is not difficult to calculate the ditK for high J. For example, 
we have calculated all the values of d&,(n/2) for 0 < J < 100 in 4.6 and 8.8 set 
using single- and double-precision arithmetic, respectively, on a CDC 7600 computer. 
The values in these two calculations agreed to at least 11 significant figures. 

In order to implement Eq. (B.2), certain starting values and symmetry relations 
are important: 

and 

d;., = 1/2J, (B.3) 

did,,, = (2J)92-‘, (B.4) 

d$-,,,, = -(J - 1)/25-1, (B.5) 

together with Eq. (B.2) are sufficient to generate all the diSK for a given J. The number 
of explicit calculations may be reduced further by means of the relations 

dfKpK = (-l)=d& 

and 

d!,~&?) = (- 1)K’-Kd&(/3). 03.8) 

Equations (B.6) and (B.8) are from [28], Eq. (B.7) is from [9], and Eqs. (B.3)-(B.5) 
follow readily from formulas in [9]. 

In our study of the numerical algebra of the Cholesky factorization, we have found 
that certain inequalities for the d’s must exist. These inequalities will be presented and 
discussed in future work. 
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