Computation of Cubic Harmonics***

KENNETH FOX** AND BURTON J. KROHN

Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87545

Received January 3, 1977

Symmetry-adapted functions (orthonormal linear combinations of angular-momentum eigenfunctions belonging to particular symmetry species) for the T_d and O_h point groups have been computed for J < 100 using an algorithm of Fox and Ozier, and Cholesky factorization of idempotent matrices. The results of Cholesky factorization are compared with those of both symmetric elimination with pivoting and an EISPACK diagonalization routine.

1. INTRODUCTION

The knowledge of linear combinations of angular-momentum eigenfunctions which transform according to the irreducible representations (irrep's) of the cubic (tetrahedral T_d and octahedral O_h) point groups is becoming increasingly important. These symmetry-adapted functions (SAF's) were constructed for T_d by Bethe [1], Jahn [2], Hecht [3], and Moret-Bailly *et al.* [4] for values of the angular-momentum quantum number $J \leq 21$. Fox and Ozier [5] developed an explicit algorithm for constructing T_d harmonics for arbitrary J. Jn that procedure the SAF's are among the eigenvectors of symmetric idempotent projection-operator matrices. Application of Cholesky factorization to construct a complete set of orthonormal eigenvectors was discussed by Householder and Fox [6]. The present work expands the theoretical developments of Fox and Ozier [5] to incorporate the O_h point group. The methods of [5, 6] are implemented to compute SAF's, or "cubic harmonics," for J up to 100 [7].

The group-theoretical approach here is in the same spirit as that used earlier [5]. Conventions for labeling coordinate systems, variables, group representations, etc., are identical to those in [5] unless explicitly stated otherwise.

* The U.S. Government's right to retain a nonexclusive royalty-free license in and to copyright covering this paper is acknowledged.

[†] Work performed under the auspices of the USERDA.

[‡] Preliminary reports of portions of this work were given by K. Fox and B. J. Krohn at the 30th Symposium on Molecular Structure and Spectroscopy, Ohio State University, Columbus, Ohio, 16–20 June 1975, Abstract RA6; and at the SIAM–SIGNUM Meeting, San Francisco, California, 3–5 December 1975, Poster Session 3.

** Permanent address: Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916.

TABLE I

Symmetry Operations of the Point Group O_h with Corresponding Permutations of the Group S(6)and Euler Angles

_		PROPER ROTATI	ONS		i N	APROPER OPERA	TIONS	EULER	ANG	ES
j	sj	DIAGRAM	PERMUTATIONS	3	5 _j .	DIAGRAM	PERMUTATIONS	a,	β.	X,
1	E	1 - 1 - 2	Y (14283848596)	25	1	30	(12)(34)(56)	0	0	0
2	c ^{sx,}		(1)(2)(34)(56)	26	٥ _Y 'z'	······································	(12)(3)(4)(5)(6)	0	π	π
3	c _{ZY} '	······································	(12)(3)(4)(56)	27	^d z'x'	30-50-0 ² 1-66	(1)(2)(34)(5)(6)	0	π	0
4	c ^s z,		(12)(34)(5)(6)	28	٥X'Y'		(1)(2)(3)(4)(56)	0	0	π
5	с _{3а}	30 1 1 1 1 1 1 1 1 1 1	(154)(263)	29	s _{6a}	20 A 1 5	(164253)	3π/2	π/2	π
6	с ₃₆		(164)(253)	30	5 <mark>6</mark> 6	5	(154263)	π!2	π/2	0
7	¢3c		(163)(254)	31	5 ⁵ 60		(153264)	3π/2	π/2	D
8	C3d		(153)(264)	32	s ⁵ 60	50 - 20 - 01 5 - 20 - 01 5 - 20 - 01	(163254)	π/2	π/2	π
9	c ² 3a	1	(145)(236)	33	S _{6a}	20	(135246)	0	π/2	37
10	с ² 36	1	(146)(235)	м	5 ₆₀	2	(136245)	π	π/2	πl
11	c _{3c}	2 • • • • • • • • • •	(136)(245)	35	5 ₆₀		(146235)	π	π/2	37
12	C ² 3d		(135)(246)	36	s _{6d}		(145236)	O	π/2	π/
13	c'zv'z'		(12)(35)(46)	37	^đ ac	5 • • • • • • • • • • • • • • • • • • •	(1)(2)(36)(45)	π/2	π/2	πl
14	Ċ <mark>'n</mark> ź	s	(12)(36)(45)	38	σbd	······································	(1)(2)(35)(46)	3 πi2	πίΖ	31
15	c ³ _{4X} '		(1)(2)(3645)	39	s _{4x} '	50 2 0 1	(12)(3546)	π/2	π/2	3л
16	c _{4x} '		(1)(2)(3546)	40	s ³ 4X'		(12)(3645)	3π/2	π/2	π/
17	, cʻ _{2Z} ʻx	30	(15)(26)(34)	41	σ _{bc}		(16)(25)(3)(4)	0	π/2	π
18	c ["] zz'x		(16)(25)(34)	42	° ad	4 1 1 1 1 1 1 1 1 1 1	(15)(26)(3)(4)	0	3 # /2	π
19	c ³ ,'		(1526)(3)(4)	43	s _{4Y} '	30-2-4-4	(1625)(34)	0	3π/2	0
20	C _{4Y} '		(1625)(3)(4)	44	\$ ³ 47'	30	(1526)(34)	0	π/2	0
21	c'2X'Y	2 2 2 4 5	(13)(24)(56)	45	₫ab		(14)(23)(5)(6)	3π12	л	0
22	c ^{''} 2χ'γ		(14)(23)(56)	46	σ _{cd}		(13)(24)(5)(6)	π/2	π	0
23	c _{4z} '		(1423)(5)(6)	47	s _{4Z} '	2	(1324)(56)	0.	0	3
24	c _{4z} '	20 - 20 - 01	(1324)(5)(6)	48	s ³ 4z'	1	(1423)(56)	O	0	Ħ

 O_h is the symmetry group for molecules like SF₆, just as T_d is for molecules like CH₄. The symmetry operations of O_h are listed in Table I, which corresponds to [5, Table I]. The proper rotations are numbered 1–24 and are denoted here by $\{S_j, 1 \leq j \leq 24\}$; the improper operations are numbered 25–48, and are $\{IS_j \equiv S_{j+24}, 1 \leq j \leq 24\}$, where *I* is the inversion. Those operations common to both O_h and T_d are $\{S_j, 1 \leq j \leq 12 \text{ and } 37 \leq j \leq 48\}$. In Table I all of these operations for O_h appear in the same order as those for T_d (in [5, Table I]), except S_{41} and S_{42} here are interchanged. The purpose of this interchange is to cause the three sequences of operations, 37–40 (where the x-direction is unique), 41–44 (where y is unique), and 45–48 (where z is unique) to be completely analogous to each other in both Tables I and III. (The sequences 13–16, 17–20, and 21–24 are also completely analogous.)

FIG. 1. Orientation of a regular tetrahedron with geometric center at the origin of Cartesian axes (X', Y', Z'), and vertices at positions a, b, c, and d (analogous to positions 1, 2, 3, and 4, respectively, in [5, Fig. 1]); labels 1-6 here refer to B positions in an octahedral AB_6 array, with A at the geometric center.

There is a slight change of notation between Fig. 1 and Table I here, and [5, Fig. 1, Table I]. Our labels *a*, *b*, *c*, *d* refer to the main diagonals passing through the vertices at positions 1, 2, 3, 4, respectively, in [5, Fig. 1]. The correspondence between the symbols for operations is as follows: $C_{31} \equiv C_{3a}$, $C_{32} \equiv C_{3b}$, etc., and $\sigma_{13} \equiv \sigma_{ac}$, $\sigma_{24} \equiv \sigma_{bd}$, etc. (In the σ -operations the subscripts define the plane of reflection.) A new notation for the C_2 operations $\{S_j; j = 13, 14, 17, 18, 21, 22\}$ has been introduced: the axis of rotation is in a plane specified by the two literal subscripts. For the symbols with a single-prime superscript, the axis of rotation is in the first and third quadrants of that plane; for those with a double-prime superscript the axis of rotation group S(6) corresponding to O_h are listed explicitly. The Euler angles measured in the molecule-fixed frame (MFF) are specified as in [5].

For completeness we tabulate the operations for the cubic subgroups of O_h . In Table II the sets of operations in each subgroup are indicated by a $\sqrt{}$.

Before turning to the actual calculation of SAF's for O_h , we wish to consider the matrix representations of T_d and O_h . In particular we demonstrate a generalization

Symmetry Operations in Cubic Point Groups; Presence is Denoted by $\sqrt{}$

Operations	Т	Th	T _d	0	<i>O</i> _h
$\mathscr{S}_{1} \equiv \{S_{1},,S_{12}\}$				\checkmark	\checkmark
$\mathscr{S}_2 \equiv \{S_{13},,S_{24}\}$				\checkmark	\checkmark
$\mathscr{I}\mathscr{S}_1 \equiv \{S_{25},,S_{36}\}$		\checkmark			\checkmark
$\mathscr{I}\!\!\mathscr{G}_2 \equiv \{S_{37},,S_{48}\}$			\checkmark		\checkmark

ГA	BL	Æ	Ш

Irreducible Representation Matrices^{a,b} of O_h

	1	2	3	4	5	6	7	8	9	10	11	12	
	25	26	27	28	29	30	31	32	33	34	35	36	
A ₁₉			1			1	l			1			
A_{2g}			1			1	l			1			
Eg		$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	0 1		($-\frac{1}{2}$ -(3) ^{1/2} /2	$\begin{array}{c} (3)^{1/2} \\ 2 & -\frac{1}{2} \end{array}$	^{′2})	(_c	$(\frac{1}{2})^{1/2}/2$	$-(3)^{1/2}/{-\frac{1}{2}}$	²)	
F ₁₉	XYZ	XŸŻ	ΧYŻ	$\bar{X}\bar{Y}Z$	ΫŻΧ	$\bar{Y}Z\bar{X}$	Y Z X	YZX	$Z \overline{X} \overline{Y}$	$Z\overline{X}Y$	ŹXŸ	ZXY	
F29	XYZ	ΧŸŻ	ΧYŻ	ΧΫΖ	ΫΖ Χ	$\bar{Y}Z\bar{X}$	YZŻ	YZX	$Z\bar{X}\bar{Y}$	ΖΧΫ	$Z X \overline{Y}$	ZXY	
	13	14	15	16	17	18	19	20	12	22	23	24	
	37	38	39	40	41	42	43	44	45	46	47	48	
A ₁₉			1			1				1			
A_{2g}		_	-1				- 1		1				
Eg	$\begin{pmatrix} c \\ s \end{pmatrix}$	$\cos 2\epsilon_x$ in $2\epsilon_x$	sin 2€ _x −cos 2€	x	(s	cos 2€y sin 2€y	sin 2∉ _y −cos 2∉	, "v	(co si	os $2\epsilon_z$ s in $2\epsilon_z$ -	$\sin 2\epsilon_z -\cos 2\epsilon_z$		
F_{1g}	Χ̈́ΖΥ	$\bar{X}\bar{Z}\bar{Y}$	$XZ\overline{Y}$	ΧŻΥ	$Z\bar{Y}X$	$Z\bar{Y}\bar{X}$	ŻYX	ZYX	YXZ	$\bar{Y}\bar{X}Z$	ΥĀΖ	Ÿ XZ	
F_{2g}	$X\overline{Z}\overline{Y}$	XZY	$\bar{X}\bar{Z}Y$	$\bar{X}Z\bar{Y}$	$ZY\overline{X}$	ZYX	$Z \overline{Y} \overline{X}$	$Z\bar{Y}X$	$\bar{Y}\bar{X}Z$	YXZ	$\bar{Y}X\bar{Z}$	Υ <i>Χ</i> Ζ	

^{*a*} Irrep's for the five *u*-species are given as follows. For proper operations (1-24) the representations are identical to these matrices. For inversion operations (25-48) the representations are the negatives of these matrices.

^b Primes are eliminated from X, Y, and Z for convenience, but their meaning is the same as X', Y', and Z' in [5, Table II].

of [5, Table II]. These results will be useful, not only in the present work, but in future computations of vibration-rotation spectra of molecules with cubic symmetry. O_h has 10 irreducible representations: A_{1g} , A_{2g} , E_g , F_{1g} , F_{2g} , A_{1u} , A_{2u} , E_u , F_{1u} , and F_{2u} . The corresponding matrix realizations are presented in Table III. The enumeration of operations of the group is given in Table I. We have organized the operations of O_h into blocks of eight, instead of into classes, in analogy to [5, Table II]. These arrays, which consist of the invariant subgroup $\{S_j ; j = 1, 2, 3, 4, 25, 26, 27, 28\}$ and its five cosets, form a compact display and facilitate the calculation of the cubic harmonics.

Table III contains the representations of type g explicitly. For the u-species the matrices are identical to those for g for proper operations $\{S_j, 1 \le j \le 24\}$, but are the negatives of those for g for the improper operations, $\{S_j, 25 \le j \le 48\}$. In the threefold representations the meaning of X'Y'Z', etc., is the same as in [5, Table II]. For example,

$$S_{39} \equiv S_{4X'} \sim (\overline{X}' \overline{Z}' Y') \sim \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix},$$
(1)

as in [5, Eq. (9)].

In the present work we have introduced the parameters ϵ_{α} , with $\alpha = x, y$, or z, where ϵ_x is an arbitrary angle, $0 \le \epsilon_x < 2\pi$, and where $\epsilon_y = \epsilon_x + \frac{2}{3}\pi$ and $\epsilon_z = \epsilon_x + \frac{4}{3}\pi$. The parameters ϵ_x , ϵ_y , and ϵ_z are identical, [8a] respectively, to ϵ_1 , ϵ_2 , and ϵ_3 given by Shaffer, Nielsen, and Thomas [8b] following their Eq. (7). We have used q_7 and q_8 defined there in terms of the ϵ 's to generate our representation matrices of species E_g and E_u . The E_g rep transforms into the *E* rep of [5] for the choice $\epsilon_x = 30^\circ$. In this case the roles of q_7 and q_8 in [8] are played by

$$f_e^{(E)} = (\frac{2}{3})^{1/2} (X'^2 \cos \epsilon_x + Y'^2 \cos \epsilon_y + Z'^2 \cos \epsilon_z) = 2^{-1/2} (X'^2 - Y'^2)$$
(2a)

and

$$f_{f}^{(\mathcal{E})} = (\frac{2}{3})^{1/2} (X'^{2} \sin \epsilon_{x} + Y'^{2} \sin \epsilon_{y} + Z'^{2} \sin \epsilon_{z})$$

= $6^{-1/2} (X'^{2} + Y'^{2} - 2Z'^{2}),$ (2b)

respectively, in [5]. The choices of basis functions for generating the E reps correspond to $\epsilon_x = 30^\circ$ in [2, 3, 5], and to $\epsilon_x = 120^\circ$ in [4]. It appears that $\epsilon_x = 30^\circ$ is related to standard forms [9] of the spherical harmonics Y_M for J = 2. The E rep in which ϵ_x remains arbitrary enjoys a certain amount of flexibility, which will be utilized in future applications.

We now turn to the correspondence between the projected functions in O_h and T_d . In [5] it was shown that the projected spherical harmonic,

$$f_{\mu}^{(k)} = \mathcal{O}_{\mu\mu}^{(k)} Y_{K}^{J}, \qquad (3)$$

where k indicates the symmetry species and μ specifies a row of the representation, is given by the expression,

$$f_{\mu}^{(k)} = (l_k/h) \sum_{K'} \tau^{(k)} Y_{K'}^J, \qquad (4a)$$

with

$$\tau^{(k)} = \sum_{S} \sigma(S) D^{(k)}(S)^*_{\mu\mu} \mathscr{D}^J_{K'K}(\alpha'\beta'\gamma'), \qquad (4b)$$

where all symbols are defined in [5, Eqs. (1)–(7)] except that $\mathscr{D}^{J}_{K'K}(\alpha'\beta'\gamma')$ here replaces $D'_{K'K}(\alpha'\beta'\gamma')$ for clarity.

Two properties of the T_d and O_h point groups are noted for the discussion which follows:

(i) Each operation in T_d corresponds to a pair of operations in O_h , such that one of the pair is identical to the operation in T_d while the other is equivalent to the first one followed by inversion.

(ii) For the operations common to T_d and O_h , the reps in T_d are identical to the reps in the g-type species of O_h , provided that the values of the phase ϵ_x for the reps of species E are coincident.

For the T_d point group, Eq. (4b) may be written in the form (see Table II)

$$\begin{aligned} {}^{(T_d)}\tau^{(k)} &= \sum_{S \in \mathscr{S}_1} D^{(k)}(S)^*_{\mu\mu} \mathscr{D}^J_{K'K}(\alpha'\beta'\gamma') \\ &+ (-1)^J \sum_{S \in I\mathscr{S}_2} D^{(k)}(S)^*_{\mu\mu} \mathscr{D}^J_{K'K}(\alpha'\beta'\gamma'). \end{aligned}$$
(5a)

For the O_h point group, Eq. (4b) becomes (see Table II)

where k' represents one of the symbols A_1 , A_2 , E, F_1 , or F_2 for O_h (as k does for T_d) and the subscript m in k_m' indicates g or u.

Defining

$$\xi(m) = \begin{cases} 0 & \text{if } m = g \\ +1 & \text{if } m = u, \end{cases}$$
(6)

we have, for each proper operation $\{S_j : j = 1, 2, ..., 24\}$ (see Table III)

$$D^{(k_m')}(S)^*_{\mu'\mu} = D^{(k_g')}(S)^*_{\mu'\mu}$$
(7a)

and

$$D^{(k_{m'})}(IS)_{\mu'\mu}^{*} = (-1)^{\varepsilon(m)} D^{(k_{\sigma'})}(S)_{\mu'\mu}^{*}$$
(7b)

where μ' need not equal μ . Substitution of Eqs. (7) into Eq. (5b) yields

The factor $[1 + (-1)^{J+\varepsilon(m)}]$ permits only projected functions of type g when J is even and only functions of type u when J is odd.

Comparison of Eqs. (5a) and (8) and use of property (ii) shows that, in either nonvanishing case (where one has $(-1)^{j} = (-1)^{\epsilon(m)}$) it follows that

$${}^{(O_h)}\tau^{(k_m')} = 2 {}^{(T_d)}\tau^{(k)}$$
 when $k' = k.$ (9)

As there are twice as many operations in O_h as in T_d , the expressions for ${}^{(O_h)}f_{\mu}^{(k_m')}$ and ${}^{(T_d)}f_{\mu}^{(k)}$ become identical, as do the expressions for "partner" functions. Therefore, calculations of the SAF's for T_d simultaneously produce the SAF's for O_h . Henceforth we shall refer to these SAF's as "cubic harmonics," and omit the subscripts g and u in the irreps of O_h .

In Section 2 we give the techniques which we have employed in the numerical computation of the cubic harmonics. The results, their systematics, and comparisons with respect to different routines for matrix diagonalization are presented in Section 3 and Appendix A. New applications of high-J cubic harmonics are discussed in Section 4. Finally, some properties of the $d_{K'K}^{J}(\pi/2)$ which are useful in their numerical and algebraic [10] calculations, are given in Appendix B.

2. TECHNIQUES AND CALCULATIONS

By means of the algorithm of [5], the normalized cubic harmonics have been constructed [7] to span the subspace $[J, k, \mu]$ [11] of each symmetry species k and partner irrep μ , for each integral value of J from 0 to 100.

It is appropriate to emphasize here the important consequences [5] of Jahn's use of restrictive elementary combinations of spherical harmonics Y_{κ} . First, we have the definitions [2]

$$U_{K}^{J} = 2^{-1/2} [Y_{-K}^{J} + (-1)^{K} Y_{K}^{J}], \qquad (10a)$$

$$U_0^{\ J} \equiv W^J = Y_0^{\ J}, \tag{10b}$$

and

$$V_{K}^{\ J} \equiv -i(2)^{-1/2} [Y_{-K}^{J} - (-1)^{K} Y_{K}^{\ J}], \qquad (10c)$$

where $K \ge 1$. Then the molecular Hamiltonian of cubic symmetry does not connect U-type functions with V-type functions [5]. Second, we may consider separately

the two sets of functions with K = 0, 4, 8,... and K = 2, 6, 10,..., as these are not mixed by the Hamiltonian [5].

Starting with one of the four restricted bases,

$$\{U_{K}^{J}, K = 0, 4, 8, ...\}, \{V_{K}^{J}, K = 4, 8, 12, ...\}, \{U_{K}^{J}, K = 2, 6, 10, ...\}, \{V_{K}^{J}, K = 2, 6, 10, ...\},$$
(11)

one constructs [5] cubic harmonics which belong, not only to a unique symmetry species, but also to a particular row of the representation. Thus the SAF's of species E emerge in two sets denoted by the labels (E_e, E_f) , and those of species F_1 and F_2 are produced in three sets, (F_{1z}, F_{1x}, F_{1y}) and (F_{2z}, F_{2x}, F_{2y}) . Each SAF in the E_e -set has a unique partner in E_f ; each SAF in the F_{1z} -set has a unique partner in each of F_{1x} and F_{1y} (similarly for F_{2z}). Furthermore, the two sets of SAF's for species E are mutually orthogonal, as are the three sets of SAF's for species F_1 and F_2 , and each set forms an invariant subspace with respect to the Hamiltonian (e.g., wavefunctions belonging to F_{2z} do not mix with those belonging to F_{2x}). Finally, in the present procedure, the SAF's belonging to the subspaces F_{1x} , F_{1y} (F_{2x} , F_{2y}) are constructed from either U_K 's with odd values of K as determined by application of the transfer operator [5] to the even-K SAF's from the subspace F_{1z} (F_{2z}).

All of the cubic harmonics calculated here, except those belonging to irreps F_{1z} and F_{2z} , require [5] knowledge of the functions $d_{K'K}^{J}(\beta)$ evaluated at $\beta = \pi/2$; their computation is discussed in Appendix B. In particular, for irreps A_1 , A_2 , and E_e^{11} one constructs symmetric idempotent matrices of the projection operators according to [5, Eqs. (53)–(58)]. The eigenvalues of these matrices are either +1 or 0 (because of idempotence). The eigenvectors belonging to the subspace of the degenerate eigenvalue +1 consist of the coefficients c_{iK} which define the SAF's that span the subspace $[J, k, \mu]$:

$$\Phi_i^{Jk\mu} = \sum_K c_{iK}^{Jk\mu} U_K^{J} \quad \text{or} \quad \Phi_i^{Jk\mu} = \sum_K c_{iK}^{Jk\mu} V_K^{J}.$$
(12)

In general, when the SAF's are not subjected to further conditions, they are not unique. However, any two sets of orthonormal SAF's that span the same space $[J, k, \mu]$ are related by a unitary transformation.

In the present work, the idempotent matrices were decomposed by Cholesky factorization [6, 12]. If A is a real symmetric positive definite matrix, then its Cholesky factors [12] determined without pivoting are triangular matrices which satisfy the equation

$$A = A^T = LL^T, (13)$$

where L is a lower triangular matrix. If A is $n \times n$ and, e.g., n = 4 with

$$A = \begin{pmatrix} a_{11} & a_{21} & a_{31} & a_{41} \\ a_{21} & a_{22} & a_{32} & a_{42} \\ a_{31} & a_{32} & a_{33} & a_{43} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \quad \text{and} \quad L = \begin{pmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{pmatrix}$$
(14)

then one has [12]

$$l_{11} = (a_{11})^{1/2}$$

$$l_{21} = a_{21}/l_{11} \qquad l_{22} = (a_{22} - l_{21}^2)^{1/2}$$

$$l_{31} = a_{31}/l_{11} \qquad l_{32} = (a_{32} - l_{31}l_{21})/l_{22} \qquad l_{33} = (a_{33} - l_{31}^2 - l_{32}^2) \qquad (15)$$

$$l_{41} = a_{41}/l_{11} \qquad l_{42} = (a_{42} - l_{41}l_{21})/l_{22} \qquad l_{43} = (a_{43} - l_{41}l_{31} - l_{42}l_{32})/l_{33}$$

$$l_{44} = (a_{44} - l_{41}^2 - l_{42}^2 - l_{43}^2)^{1/2}.$$

In our work, however, each matrix is not positive definite, but idempotent (and, therefore, positive semidefinite), whose rank \mathbf{r} is the multiplicity of the eigenvalue +1. Consequently [13, 14] one expects the above procedure to be inapplicable because it does not involve a search for the largest diagonal element and an interchange of appropriate rows and columns before each step: one might encounter a singularity due to a zero diagonal element in L or a column that is linearly dependent on previous columns (or nearly so), before reaching the end of \mathbf{r} "good columns." However, the difficulty appears to be avoidable in this problem if we arrange our matrices in a particular way (see Section 3), so that we are able to perform the above Cholesky factorization without pivoting. We have not fully investigated the reasons why pivoting is not necessary. Moler and Stewart [14] have analyzed the effects of roundoff error in this algorithm, and have shown that if the diagonal elements of the computed L are not too small, then the columns of L must be close to orthogonal and AL must be close to L. (Specific examples and further discussion are given in Section 3.)

The above procedure yields a trapezoidal matrix L of \mathbf{r} columns with $\mathbf{r} \leq \mathbf{n}$, because $l_{r+1,r+1} \equiv 0$. The \mathbf{r} columns thus determined comprise all of the eigenvectors of A with eigenvalue +1, and they are orthonormal [6]. Four equations which apply to A and its eigenvectors are

$$A^2 = A, \tag{16a}$$

$$A = LL^{T}, (16b)$$

$$4L = L, (16c)$$

and

$$L^{T}L = I, (16d)$$

where Eqs. (16c) and (16d) are implied by Eqs. (16a) and (16b); here I is the $\mathbf{r} \times \mathbf{r}$ identity matrix.

The following symmetric idempotent matrices have been constructed from [5, Eqs. (53)–(58)]; their eigenvectors, given below, corresponding to the eigenvalue +1, are SAF's for their respective subspaces [11]:

$$K = 2 \qquad 6$$

$$K' = 2 \begin{pmatrix} 5/16 & 55^{1/2}/16 \\ 6 & (55^{1/2}/16 & 11/16 \end{pmatrix} \qquad [J = 6, E_e],$$
(17a)

K =	4		8					
$\frac{K'=\frac{4}{8}\Big($	17/24 —(7 · 17) ^{1/3}	²/24	-(7 · 17) ^{1/} 7/24	^{2/24})	[<i>J</i> =	$= 9, A_2],$		(17b)
K =	0		4			8		
$\begin{array}{c} K'=0\\ 4\\ 8 \end{array} \Big($	/ 33/64 (7 · 11) ^{1/} (5 · 11 · 13	²/32) ^{1/2} /64	(7 · 11) 7/4 (5 · 7 · 1) ^{1/2} /32 18 .3) ^{1/2} /96	(5 · (5	11 · 13) ^{1/2} /6 · 7 · 13) ^{1/2} /9 65/192	$\begin{pmatrix} 64\\6 \end{pmatrix}$ [$J=8,A$	4 ₁], (17c)
K =	4		8	12		16	20	
$\begin{array}{rrr} K' = & 4 \\ & 8 \\ & 12 \\ & 16 \\ & 20 \end{array}$	$\begin{pmatrix} 0.50703 \\ -0.2403 \\ -0.17564 \\ 0.06679 \\ 0.39603 \end{pmatrix}$	50 —(71 (44 (90 —(56 (0.240371 0.662923 0.263113 0.183236 0.250746	-0.1756 0.2631 0.3842 0.3661 0.0497	544 13 201 14 718	0.066790 -0.183236 0.366114 0.779134 0.002895	0.396056 0.250746 0.049718 0.002895 0.666692	
						[•	$J=21, E_e];$	(1 7 d)
Example	Subspace	Order	Rank = Nof SAF'	lo. 's		SA	F's	
(17a)	$[6, E_e]$	2	1		(5	$(16)^{1/2} U_2^6 +$	- (11/16) ^{1/2} U	6
(17b)	$[9, A_2]$	2	1		-($(17/24)^{1/2} V_4^{a}$	$+ (7/24)^{1/2}$	V 8 ⁸
(17c)	$[8, A_1]$	3	1	(33/6-	4) ^{1/2} ($U_0^8 + (7/48)^3$	$U^{1/2}U_4^{\ 8} + (65/$	192) ^{1/2} U ₈ ⁸

In examples (17a)-(17c) where the rank is 1, each SAF is unique and is in agreement with the results of Jahn [2] and Moret-Bailly [4], except possibly for an overall phase factor. When the rank exceeds 1, the eigenvectors are not unique. In example (17d), Cholesky factorization yields the (orthonormal) eigenvectors

3

(17d)

 $[21, E_e]$

5

$$\Phi_1^{21,E_s} = 0.712074 \ V_4^{21} - 0.337565 \ V_8^{21} - 0.246666 \ V_{12}^{21} + 0.093797 \ V_{16}^{21} + 0.556200 \ V_{20}^{21}, \tag{18a}$$

See Eqs. (18) and (19)

$$\Phi_2^{21,E_{\bullet}} = 0.740927 V_8^{21} + 0.242733 V_{12}^{21} - 0.204573 V_{16}^{21}$$
(18b)
+ 0.591826 V_{20}^{21} ,

$$\Phi_3^{21,E_s} = 0.514235 \ V_{12}^{21} + 0.853514 \ V_{16}^{21} + 0.084120 \ V_{20}^{21}. \tag{18c}$$

On the other hand, reflection of the matrix (17d) about the second main diagonal (i.e., the diagonal running from the lower left to the upper right), and Cholesky

factorization of the result yields the following set of orthonormal eigenvectors:

$$\Theta_{1}^{21, E_{e}} = 0.816512 \ V_{20}^{21} + 0.003546 \ V_{16}^{21} + 0.060890 \ V_{12}^{21} + 0.307094 \ V_{8}^{21} + 0.485058 \ V_{4}^{21}, \tag{19a}$$

$$\Theta_2^{21,E_e} = 0.882679 \ V_{16}^{21} + 0.414531 \ V_{12}^{21} - 0.208825 \ V_8^{21} + 0.073719 \ V_4^{21}, \tag{19b}$$

$$\Theta_3^{21,E_e} = 0.456790 \ V_{12}^{21} + 0.724575 \ V_8^{21} - 0.516076 \ V_4^{21}. \tag{19c}$$

As these two sets of orthonormal basis vectors in Eqs. (18) and (19) span the same subspace, they must be related by a unitary transformation. In fact, we have explicitly that

$$\begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \end{pmatrix} = \begin{pmatrix} 0.681190 & 0.724822 & 0.103023 \\ 0.103527 & -0.234676 & 0.966545 \\ -0.724751 & 0.647735 & 0.234898 \end{pmatrix} \begin{pmatrix} \Theta_1 \\ \Theta_2 \\ \Theta_3 \end{pmatrix}.$$
 (20)

We also have verified that all of the matrices and SAF's of examples (17a)-(17d) satisfy the matrix equations (16a)-(16d).

3. RESULTS, SYSTEMATICS, AND COMPARISONS WITH OTHER METHODS

A computer program is available [7] which calculates SAF's for arbitrary values of J, symmetry species, and partners. It incorporates the recursion formula for $d_{K'K}^J(\pi/2)$ and the algorithm for cubic harmonics of Fox and Ozier [5], and Cholesky decomposition [6] (as discussed above) of the idempotent matrices generated by the algorithm for species A_1 , A_2 , and E_e . Presented as an example in Table IV are all of the SAF's computed for each subspace associated with J = 14, and in Table V are two sets of SAF's belonging to the subspace $[J = 100, A_2]$, as determined in double precision (relative accuracy = 5.0×10^{-29}) on the CDC 6600 and 7600 computers at Los Alamos. Table V gives the SAF's for the two "arrangements" of the same idempotent matrix, one with the lowest value of K in the first column and the other with the highest value of K in the first column; the two sets are analogous, respectively, to the Φ_i and the Θ_i of the previous Section.

It is evident that at high J the coefficients c_{iK} in a particular SAF generally do not all have the same magnitude, but suffer extreme variations, especially when the "high-K" SAF's are determined first; solutions with such peculiarities are found to obey Eqs. (16c,d) satisfactorily in double precision. However, the "arrangement" of the matrix (with respect to reflection across the second main diagonal as discussed in Section 2) does affect crucially, as follows, the accuracy of the calculated SAF's with J near 100 (for J even or odd):

Spec.	High K in upper left	Low K in upper left
A_{1}, A_{2}	26 significant figures	Poor
E_{e}	Poor	26 significant figures

This diagram indicates several facts. First, one can use Cholesky factorization without pivoting to obtain a set of SAF's for each value of J, and symmetry species A_1 , A_2 , and E_e , because at least one arrangement of each idempotent matrix always yields a basis set of SAF's with very little loss of accuracy. Second, despite the fact that Cholesky factorization without pivoting cannot be applied generally to positive semidefinite matrices [13], we have found specific examples of such matrices that can be so decomposed. Our matrices are idempotent, constructed from known formulas [5], and "arranged" as specified above. Third, the deficiency due to the absence of pivoting is manifest in the excessive losses of accuracy that occur during decomposition of our matrices in their "poor arrangements." More specifically, we calculated the inner product $(\Phi_i \cdot \Phi_j)$ for each pair of SAF's to test their orthonormality (Eq. (16d)), and the vector difference $\mathbf{X}_i = (A \mathbf{\Phi}_i - \mathbf{\Phi}_i)$ to verify that each SAF is an eigenvector of A corresponding to the eigenvalue +1 (Eq. (16c)). For the "poorly arranged" matrices we found that, as Φ_i and Φ_j were generated progressively later during the Cholesky factorization (i.e., as i and j approached r, the rank of the matrix), the values of $(\mathbf{\Phi}_i \cdot \mathbf{\Phi}_j)$ (for $i \neq j$), and of the components of \mathbf{X}_i , increased rapidly in size and indicated unacceptable magnifications of round-off error. For J = 100, in a "poorly arranged" matrix, typical indications for the SAF's Φ_{r-1} and Φ_r , determined last, are that $|(\Phi_{r-1} \cdot \Phi_r)|$ is about $10^{-18} - 10^{-17}$, that $1 - \Phi_r \cdot \Phi_r$ is about 10^{-16} , and that components of X_r can be as large as 10^{-21} in magnitude. (This to be compared with the observations that $|(\Phi_{r-1} \cdot \Phi_r)|$ and components of X_r are about 10⁻²⁶ for the "good arrangements.") Although such losses of accuracy are not critical to doubleprecision computations, they can alter most, if not all, of the significant figures in single precision.

Other methods of decomposition of the idempotent matrices were tested to compare

Cholesky factorization. A routine employing symmetric elimination of rows and columns, including a search for the largest diagonal element and pivoting before each elimination, was written by Moler [15] for our use. We also have employed the EISPACK routines [16] "TRED2" and "IMTQL2" which contain the intermediate step of tridiagonalization before diagonalization. These methods are discussed in Appendix A, and the results are compared in Table VI. We attribute the short execution times for Cholesky factorization to the absence of pivoting; because this absence does not cause appreciable extra losses in accuracy, we surmise that the

581/25/4-6

Þ	
щ	
ē	
H	

Cubic Harmonics for $J = 14^{a}$

$\phi_{K=12}^{(A_1)}$	It	0.5963480 <mark>14</mark>	+0.4911320 ¹⁴ 8	+0.457682U ¹⁴	-0.4400960 ¹⁴ 0			
$^{\Phi_{K=14}(A_{2})}$	N	0.577280U14	-0.0201720 ¹⁴	-0.2485310 ¹⁴ 6	-0.7775430^{14}			
$\left(\Phi_{K=2}^{\Phi}(\mathbf{E}_{e}) \right)$	H	0.628829U ¹⁴ 2	-0.3073070 ¹⁴	-0.0249420 <mark>14</mark>	+0.7138030 <mark>14</mark>			
$\left\{ \Phi_{K=2}^{(E_f)} \right\}$	U	-0.5465840 ¹⁴ 0	-0.668241U ¹⁴	-0.3303400 ¹⁴ 8	$+0.3815430_{12}^{14}$			
$(\Phi_{K=6}^{(E)})$	ĸ		0.918583U ¹⁴ 6	-0.0138020_{10}^{14}	+0.394987U ¹⁴ 14			
$\left\{ \Phi_{K=6}^{(E_f)} \right\}$	II	-0.5730630 ¹⁴ 0	-0.135586U ¹⁴ 4	+0.437774U ¹⁴ 8	-0.6793890 ¹⁴ 12			
$\left(\phi_{K=10}^{(E_e)}\right)$	II			0.9993900_{10}^{14}	+0.034922U ¹⁴			
$\left\{ \Phi_{K=10}^{(E_f)} \right\}$	H	-0.4232730 ¹⁴ 0	+0.570612U ¹⁴ 4	-0.6767700 ¹⁴ 8	-0.1929340_{12}^{14}			
(a) ¢	i	414						
$\binom{WK=4^{VT}1z}{2}$	I	4	71	71	14	14	14	14
$\left\langle \Phi_{K=4}^{(F_{1x})} \right\rangle$	11	0.117942V ¹⁴ 1	-0.322924V ¹⁴ 3	+0.437482V ⁻⁴ 5	$-0.409643V^{+7}$	+0.203123V ⁻⁹	$+0.185425V_{11}^{-1}$	$-0.668558v_{13}^{13}$
$\left(\Phi_{\mathrm{K}=4}^{\mathrm{(F_{1y})}} \right)$	H	0.1179420 ¹⁴	+0.322924U ¹⁴ 3	+0.4374820 ¹⁴ 5	+0.409643U ¹⁴ 7	+0.203123U ¹⁴ 9	-0.185425U <mark>14</mark> 11	-0.6685580 ¹⁴ 13
$(\Phi_{K=8}^{(F_{1z})})$	ŧ	v ¹⁴ 8						
$\left\langle \Phi_{\mathrm{K=8}}^{(\mathrm{F}_{\mathrm{1x}})} \right\rangle$	N	$0.253124V_{1}^{14}$	-0.457119V ¹⁴ 3	+0.075265V ¹⁴ 5	+0.460515V ¹⁴ 7	-0.298272V ¹⁴ 9	-0.607403V <mark>14</mark>	$-0.226554V_{13}^{14}$
$\left(\Phi_{K=8}^{(F_{1y})} \right)$	IJ	0.253124U ¹⁴ 1	+0.4571190 ¹⁴ 3	+0.0752650 ¹⁴ 5	-0.4605150 ¹⁴ 7	-0.2982720 ¹⁴ 9	$+0.6074030_{11}^{14}$	-0.2265540 ¹⁴ 13
$\left(\Phi_{\mathrm{K=12}^{(\mathrm{F}_{\mathrm{1z}})} \right)$	11	v ¹⁴ 12						
$\left\{ \Phi_{\mathrm{K}=12}^{(\mathrm{F}_{\mathrm{1x}})} \right\}$	H	0.461026V ¹⁴ 1	$-0.116381v^{14}_{3}$	-0.594030V ¹⁴ 5	-0.573887V ¹⁴ 7	-0.291312V ¹⁴ 9	-0.081935V ¹⁴ 11	-0.010764V ¹⁴ 13
$(\phi_{K=12}(F_{1y}))$	ĸ	0.461026U ¹⁴ 1	+0.1163810 ¹⁴ 3	-0.5940300 ¹⁴ 5	+0.5738870 ¹⁴ 7	-0.2913120 ¹⁴ 9	+0.0819350 ¹⁴ 11	-0.0107640_{13}^{14}

+0.066020V14 -0.066020V14 +0.0066020V14 +0.000646V14 -0.000646U13	+0.323486V ¹⁴ +0.323486U11 +0.006987V14 +0.006987U14 +0.006987U14	+0.616455V ¹⁴ -0.616455U ¹⁴ +0.038269V ¹⁴ -0.038269U ¹⁴ -0.038269U ¹⁴	+0.3573900 ¹⁴ +0.3573900 ¹⁷ +0.132829V ¹⁴ +0.132829V ¹⁴	-0.356481V ¹⁴ +0.356481U ¹⁵ +0.320813V ¹⁴ -0.320813U ¹⁴ -0.320813U ¹⁴	-0.375561V14 -0.375561V14 +0.565677V14 +0.565677V13 +0.565677U13	0.339306ν ¹⁴ 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	
+0.000646V14 13 0.000546V14	+0.006987v14 11 4	+0.038269V ¹⁴ 9	+0.132829V ¹⁴ 7	+0.320813V ¹⁴ 5 2 20000000000000000000000000000000000	+0.565677v ¹⁴ 3	V14 14 0.746948V14	
-0.0660200 ¹⁴ 13	+0.323486U ¹⁴ 11	-0.6164550 ¹⁴ 9	+0.3573900 ¹⁴ 7	+0.3564810 ¹⁴ 5	-0.3755610 ¹⁴ 3	-0.3393060 ¹⁴ 1	"
+0.066020V ¹⁴	+0.323486V <mark>14</mark>	+0.616455V ¹⁴ 9	+0.357390V ¹⁴ 7	-0.356481V ¹⁴	-0.375561V ¹⁴	v14 v10 0.339306v ¹⁴	# 0
-0.4880450 <mark>14</mark> 13	+0.466238U <mark>14</mark>	+0.4338530 ¹⁴ 9	$-0.011075u^{14}$	-0.3750440 ¹⁴ 5	-0.4270700 ¹⁴ 3	-0.1817610 ¹⁴	N
+0.488045V ¹⁴	+0.466238v ¹⁴	-0.433853V ¹⁴ 9	-0.011075V ¹⁴	+0.375044V ¹⁴ 5	-0.4270700 ¹⁴ 3	v ¹⁴ 6 0.181761v ¹⁴	H H
-0.5089590 ¹⁴	-0.5175860 ¹⁴ 11	-0.4638990 ¹⁴ 9	-0.3811530^{14}	-0.2818080 ¹⁴ 5	-0.1726080 ¹⁴ 3	-0.0580970 ¹⁴	N
-+0.5089590 ¹⁴	-0.517586V ¹⁴ 11	+0.463899V ¹⁴ 9	-0.381153V ¹⁴ 7	+0.281808V ¹⁴ 5	-0.172608V ¹⁴ 3	0.0580970 ¹⁴ 1	\$I
						v ¹⁴ 2	'n

matrix was decomposed by Cholesky factorization. This use of K to label SAF's is consistent with the notation of [5, Eqs. (36)-(42)].

COMPUTATION OF CUBIC HARMONICS

14 - 40 14-00 - 1111-01	7		0	v o	87 0	1	2
	•••••••••••••••••••••••••••••••••••••••	•	•	•	•	•	•
94 -6.51449554D-25	10-069205577.5	<i>0</i> .	•	•	• •	•	•
90 - 3, 11542500D-20	-4.054072540-17	5.77350269D-01	•0	••	••	••	•0
86 =6.51713679D+1R	-7.07028471D-15	-1.904786580-12	5.773502690-01	••	•	••	•0
82 -7.43708206D-16	-6.602411470-13	-1.436850360-10	-1.304715460-08	5.773499630-01	.0	•0	.0
78 -5 2281 (1160-14	11-00046427	-6.513200680-09	-4 62714048D-07	-1.660934350-05	5.771826470-01		
74 -2 444932640-12	-1.40350540D-09	1 904212140-07	-1.040047410-05	-2.781085470-04	10-0124454450-0-	5.607059450-01	
70 -8 018041110-11	-1 625740870-08	198543460-06	- 548244810-04	-2 080607470-03	- 917495870-02	-1 -14475810-01	1 2172450711-01
64 -1 015704540-00	- 71412240D-07				1 286211011	-1 54807704D-01	
10-02989/01/ #= oc	C0=0/6BE2266.2-	\$0-045/0mB\$0**-	20-000161162 6-	10-002585400.7-	10-0*5*5070**S-	[A-A/tachasA">	20-0[+/20005]
54 -5_04168683D-06	-7.231128030-04	-2.023007640-02	-1.679768130-01	-3.81696810D-01	7.15020318D-02	1.357587810-01	-2.906773680-01
50 -4,263139240-05	-4.284071000-03	-7.691817880-02	-3.390965520-01	-1.488024330-01	2.714207460-01	-2.763217270-01	3.469759270-01
10-00-00-00-00-00	CO		10-000009403	10-072002101	- 0707046E0-01	10-01-140-001	- 1 1 4 4 1 5 8 5 - 0 1
						10-00-00-01-01	In-deace last te-
42 -1.56143851D-05	-b./234034HD-02	-3.63066/030-01	-5,067824070-03	9.46242429248	-6.335010100-02	50-00/664918.6-	2.501700340-01
38 -b.A5296613D-03	-1.744501950-01	-3.515949910-01	3.069259920-01	-2.777260370-01	2.340657850-01	-1.093241260-01	-1.94781163D-01
12 -7.415668590-02	10-0099900-01	*2.097985380=02	7.242894540-01	1.189475420-01	-2.472581410-01	1.440187240-01	1.4641144001
20+05#A1C00*/- 05	10-01000000000	10-091994460*6	-6,10-005201011	10-000210525.1	10-000000000000000000000000000000000000	10-02#550005.2-	10-0/0/140001-
26 -1 62096440D-01	-2.444096370-01	1,120550650-01	1.318255350-01	-2.540923930-01	2.169816580-02	2.368374720-01	7.420349860=02
22 -2 976887750-01	1.296873720-01	-2.705012270-01	10-05750-01	1.852271070-01	-1.450710750-01	-2.142705040-01	-5.277105770-02
18 -4 211647560-01	1 118761270-01	-7 196031HUD-00	-2 -A2589540-01	- 4 901847510-01	111000000000000000000000000000000000000	1 799415110-01	CO-01120011 1
· · · · · · · · · · · · · · · · · · ·							
	20-00-502020-1	10-040424510-2	20+054151460 0	Inadmoce/engite	10-010602055-2-	[A=00200000*1=	20+00100-00
10 -2,360472140-01	-2,55616853D-01	-3,6514946AD-02	1,061973410-01	2,411210640-01	2.021575280-01	1,000165530-01	1,652910070-02
6 9.09582902D=02	•1.737388660-01	-2.569555510-01	-2.545986600-01	-2.06246420D-01	-1.52895700-01	-5.962613860-02	-9.294142760-03
2 1 504742740-01	0 215241040-01	1 447781240-01	1 184077410-01	a 012054740-02		C0-01/7702010	
			for and that the	30-00/5000000			C1102/2011
			:		:::	ľ	
X = X	•	10	14	18	20	26	30
K'= 2 4.767361990-01	•0	0.	••	•	•0	•0	•0
10-01127215 C- 4	4 29917512D-01	ć			. 0	0.	0.
			•				
				•	•	•	
14 -2,150274070-01	-2.76529659D=01	-4,284466800-01	2.594091460-01	•••	•0	.	•0
18 -2.100390170-01	-2.25236469D-01	-2.598361670-01	-5.037202830+01	1.561593760-01	0.	0.	0 .
10-00044710 c- cc	-1 AS7283280-01	-9 211071510-02	C0-00-01-11 H-	4 717921160-01	A 987144150-02		
		CONCEPTION OF T				014774040-03	
10-0/2160104 1- 02	10-055304000*1-						
50 -1.87260835D-01	-3.402556250-02	1.586600640-01	2.551975670-01	2,454864730-01	4.603045740-01	-1.5055560-01	C0-0691/69/0"2
34 -1,769532080-01	3.13077064D-02	2.11809710D-01	1.795314570-01	3.149906410-02	-4.968208590-02	3.546996930-01	-2.01104475D-02
18 -1 - 452119210-01	9.136140206-02	2.085009690-01	1.858729860-02	-2.120106030-01	-1.149145010-01	10-005020250-01	8.876598360-02
							Interested to the second se
10-05515/415 1- 24	10-07070 200	10-046432666.1	[0+0001///n+"]-	10-0601122.2-			
46 -1,57166694D-01	1.807349610-01	6,076518040-02	-2.228837740-01	-4.334901060-02	2.564224760-01	2,624511590-01	4,000004330-01
50 -1,20692306D-01	2.031895660-01	-4.81813015D-02	-1.892449480-01	1.777264910-01	1.648910580+01	-2.17353720D-01	-4.620508230-01
Sa - 1 02474ABD-01	0 070486970-01	-1 469979140-01	-1 4129874AD-02	TIANADIT C	10-0162254 1-	-1 48914060D-01	2.898162230-01
						CONTRACTOR C	
20-001002#22*0= 0t							
20+0+0995246 5- 29	10-01 5949055.1	10+09552751.2-	10-000585822.2	10-050005000.1-	20-055 A01 AA0 * C	10-0601030-1	
66 -3,5225526660-02	9.555016820-02	-1.518425470-01	2.004964710-01	-2.409365560-01	2.736001650-01	10-0000/5/11.5-	4.554468550=01
70 -7.805890420-03	2.106401380-02	-1.289525160-02	4.110045170-02	-4.221083800-02	2.531133750-02	4.372709760-02	-3.487922520-01
CA-ACTTREAC C DT	- 40.00.910-00	1 111119960-01	-1 -5674271D-01	2 24917074D-01	-2 915764400-01	1.01506110-01	2.009180540-01
						1 7 2 4 6 5 7 4 0 - 0 1	A TANGAROOM
				10-0-5120250.2			
55 9,704185920-02	-2.27028478D-01	2.480421780-01	-1.08547873D-01	-1,67261440D-01	10-0/1/21/04.5	10-025100425.5	2,100/01020-02
86 1.43748672D-01	-2.679261120-01	1.189745200-01	2.087080520-01	-2.76739170D-01	-3-140126530-01	-8-915623630-02	-6-122152060-03
	- 4 1747450-01				10-010 H 10 10 1	2 101175990-02	0 1010000000000000000000000000000000000
10-092999208*2 86.	-6.903382520-02	-3.697258640-01	-3.057841270-01	+1.258364110-01	-2.751057560-02	-2.7/8548850-05	CO-01181/87C.8-
98 4,244434340-01	3.405453640-01	1.810850300-01	6.47170147D-02	1.501699460-02	2.085279820-03	1.462544730-04	3.275664380-06
^a This scheme of lab	aling the SAE's	with V and the	Componente mitt	V' is concietant		·/	
THIS SCHOLES OF 190		ATT NIR V THIM	numbring with	I V IS CONSISTEN	WITH THE TICHART	n or (c) Eds. (c)	opp(4z)]. boun me
upper and lower sets o	of SAF's are deriv	ed hv Cholesky f	actorization of th	e same symmetric	idemontent matr	iy taken respecti	velv in ite "and"
· · · · · · · · · · · · · · · · · · ·					min analoguiant	invited invited	vuj, m na good
and "poor" arrangem	ents. All of the d	igits shown are p	robably correct, (except several figu	ures in the second	and third comp	onents of the first
SAF in the numer set	which are extrar	ualy amall. In th	in takla the notat	Ham D followed	L. a manating ini	indicates t	hat the second ted
The month and the sec	WITCH WIG CALLOI	IICIS SIIIAII. III UI	IS LAUIC LITE LIVIAL	1011 D, 10110WCU	oy a negative m	teger, inulcates u	hat the associated

TABLE V — SAF's^a for $[J = 100, A_2]$

400

"good arrangements" of the idempotent matrices are already nearly optimally pivoted. The iterative procedure of "IMTQL2" gains still more accuracy, but requires considerably more time.

TABLE VI

Comparative Statistics for Three Methods of Decomposition of Symmetric Idempotent Matrices during Computation of SAF's for J = 100

	Choles! with	cy facto out pive	rization oting ^a	S el wit	ymmetr iminatio h pivoti	ic on ing	Tridia di a g	agonaliz (QR) a gonaliza	ation Ind tion
Test	A1	A_2	E _e	<i>A</i> ₁	A_2	E,	A ₁	A_2	E _e
Time of execution ^b (msec)	7.1	6.1	9.7	22.0	19.2	25.8	248.9	218.2	169.3
$\operatorname{Max}[1 - \mathbf{\Phi}_i \cdot \mathbf{\Phi}_i] \times 10^{28}$	140.	170.	320.	200.	270.	190.	23.	19.	40.
Max[$ \mathbf{\Phi}_i \cdot \mathbf{\Phi}_j $] $ imes 10^{28}$ c	19.	17.	50.	58.	76.	72.	2.3	1.8	2.9
$\operatorname{Max}[A \Phi_i - \Phi_i] imes 10^{28 \ c,d}$	79.	63.	80.	73.	88.	61.	43.	35.	25.

^a The "good arrangement" of each idempotent matrix, as discussed in Section 3, is always taken. ^b Each time interval represents an average value for 10 runs through the routine that decomposes the matrix; all tests of the time were made on the same CDC 7600 computer at LASL.

^c It is important to note that these entries indicate roundoff errors that accumulate both during computation of the eigenvectors Φ_i and during the arithmetic required to conduct the tests.

 d These values indicate the absolute value of the largest *component* that occurs in all of the vector differences in each subspace.

4. APPLICATIONS OF HIGH-J SAF'S

Methane is a significant constituent of the atmospheres of the outer planets (AOP), and the stratosphere of the Earth [17]. Enormous quantities of CH₄ present in AOP suggest that absorption features arising from vibration-rotation transitions in the infrared will be important [18] out to J near 30 for the strong fundamentals ν_3 and $\dot{\nu}_4$. Appropriate laboratory spectra, requiring very long effective absorption paths and low temperatures, are not yet available. Consequently, spectral line positions and intensities have been calculated, and corresponding planetary spectra have been synthesized [18] for $0 \le J \le 30$ in ν_3 and ν_4 of CH₄. In that work, the theoretical formulation of Moret-Bailly *et al.* [4, 19] was applied, and tetrahedral splittings were computed using Dang-Nhu's program [20] for F-coefficients.

Vibration-rotation spectra of molecules like SF_6 with octahedral symmetry appear to be similar to corresponding spectra of tetrahedral molecules like CH_4 . The theoretical bases for these similarities are well established [4, 19]. Recently, an ultra-high resolution spectrum of the infrared-active fundamental ν_3 of SF_6 was obtained [21], and a preliminary analysis was made [21] for $0 \le J \le 20$. Similar spectra, of even higher resolution [22], were unraveled [23, 24] to determine the quantum numbers of absorption transitions in SF₆ which corresponds to emission in the 10.6- μm region by a CO₂ laser. Infrared transitions involving $J \le 60$ in SF₆ were identified in this application.

From a purely abstract viewpoint, it is intriguing to study the systematics of the coefficients [4] $F_{A_1pp}^{(4,J,J)}$ used in analyses of high-resolution vibration-rotation spectra of spherical-top molecules. These coefficients have been calculated for $2 \leq J \leq 100$ [25] and remarkable regularities have been found [26]. This problem is part of an extensive theoretical program to analyze ultra-high resolution infrared spectra of molecules like SF₆ and CH₄ [27].

APPENDIX A: METHODS, OTHER THAN CHOLESKY FACTORIZATION, FOR DETERMINING THE EIGENVECTORS OF A SYMMETRIC IDEMPOTENT MATRIX

1. Symmetric Elimination with Pivoting

The following procedure (and its implementation), written by Moler [15], permits a search for the largest diagonal element of A (and an interchange of rows and columns) before each elimination of a row and column, so that round-off error [14] is acceptably small. The matrix remains symmetric after each complete elimination.

Let A be a symmetric idempotent matrix and let Y be a nonsingular matrix such that

$$Y^T A Y = D, \tag{A.1}$$

where D is a diagonal matrix with no negative elements. Then

$$A = (Y^{T})^{-1} DY^{-1} = (Y^{-1})^{T} DY^{-1}$$
(A.2)

or

$$A = \mathscr{L}\mathscr{L}^{\mathsf{T}},\tag{A.3}$$

where

$$\mathscr{L} = (Y^{-1})^T D^{1/2}. \tag{A.4}$$

As Eq. (A.3) is of the form

$$PAP^{T} = LL^{T} \tag{A.5}$$

[6, Eq. (2)], with P = I, it follows that

$$\mathscr{L}^{T}\mathscr{L} = I \tag{A.6}$$

(i.e., the nonvanishing columns of $\mathcal L$ are orthonormal) and that

$$A\mathscr{L} = 1 \cdot \mathscr{L} \tag{A.7}$$

(i.e., the nonvanishing columns of \mathscr{L} are eigenvectors of A corresponding to the eigenvalue +1).

We determine Y^T by a succession of **r** eliminations of a row and a column (where **r** is the rank of A and **n** is the order of A). In matrix notation this is written

$$A_0 \equiv A, \tag{A.8}$$

$$A_1 = M_1 A_0 M_1^{-1}, (A.9)$$

$$A_2 = M_2 A_1 M_2^{-1}, \tag{A.10}$$

$$D = A_r = M_r A_{r-1} M_r^{-1}, \tag{A.11}$$

and

$$Y^{T} = M_{r}M_{r-1}\cdots M_{1}, \qquad (A.12)$$

where each M_j , $1 \le j \le \mathbf{r}$, is selected to eliminate the row and column corresponding to the largest diagonal element a_{mm} in A_{j-1} . M_j is $\mathbf{n} \times \mathbf{n}$ and has the form

$$\begin{pmatrix} 1 & 0 & \cdots & -a_{1m}/a_{mm} & \cdots & 0 \\ 0 & 1 & \cdots & -a_{2m}/a_{mm} & \cdots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & -a_{nm}/a_{mm} & \cdots & 1 \end{pmatrix}$$
(A.13)

and M_j^{-1} has the form

$$\begin{pmatrix} 1 & 0 & \cdots & a_{1m}/a_{mm} & \cdots & 0 \\ 0 & 1 & \cdots & a_{2m}/a_{mm} & \cdots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nm}/a_{mm} & \cdots & 1 \end{pmatrix}.$$
 (A.14)

Finally, Eq. (A.4) becomes

$$\mathscr{L} = M_1^{-1} M_2^{-1} \cdots M_r^{-1} D^{1/2}. \tag{A.15}$$

For example, applying this procedure to matrix (17d) of Section 2 we find successively

$$A_{1} = \begin{pmatrix} 0.501325 & -0.224663 & -0.207029 & 0 & 0.395808 \\ -0.224663 & 0.619830 & 0.349215 & 0 & 0.251427 \\ -0.207029 & 0.349215 & 0.212165 & 0 & 0.048357 \\ 0 & 0 & 0 & 0.779134 & 0 \\ 0.395808 & 0.251427 & 0.048357 & 0 & 0.666681 \end{pmatrix},$$
(A.16)

$$A_{2} = \begin{pmatrix} 0.266334 & -0.373935 & -0.235739 & 0 & 0 \\ -0.373935 & 0.525009 & 0.330978 & 0 & 0 \\ -0.235739 & 0.330978 & 0.208657 & 0 & 0 \\ 0 & 0 & 0 & 0.779134 & 0 \\ 0 & 0 & 0 & 0 & 0.666681 \end{pmatrix},$$
(A.17)

and

with

$$M_{1} = \begin{pmatrix} 1 & 0 & 0 & -0.085724 & 0 \\ 0 & 1 & 0 & 0.235179 & 0 \\ 0 & 0 & 1 & -0.469899 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -0.003716 & 1 \end{pmatrix},$$
(A.19)
$$M_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 & -0.593699 \\ 0 & 1 & 0 & 0 & -0.377132 \\ 0 & 0 & 1 & 0 & -0.072534 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$
(A.20)
$$M_{3} = \begin{pmatrix} 1 & 0.712245 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & -0.630423 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \end{pmatrix},$$
(A.21)

and

$$\mathscr{L} = \begin{pmatrix} (K' = 4) \\ (8) \\ (12) \\ (16) \\ (20) \end{pmatrix} \begin{pmatrix} 0 & -0.516075 & 0 & 0.075667 & 0.484758 \\ 0 & 0.724575 & 0 & -0.207589 & 0.307930 \\ 0 & 0.414773 & 0.059224 \\ 0 & 0 & 0 & 0.882686 & 0 \\ 0 & 0 & 0 & 0.003280 & 0.816505 \end{pmatrix}.$$
(A.22)

The three nonvanishing columns of \mathscr{L} must be related to $\{\Phi_i ; i = 1, 2, 3\}$ and to $\{\Theta_i ; i = 1, 2, 3\}$ of Section 2 by unitary transformations.

404

2. Tridiagonalization followed by Diagonalization

The program TRED2 [16] which incorporates a series of orthogonal transformations according to Householder [16], has been employed to reduce our symmetric idempotent matrices to symmetric tridiagonal form. Because the eigenvalues +1 and 0 occur with respective multiplicities \mathbf{r} and $(\mathbf{n} - \mathbf{r})$ that generally exceed 1, we expect [13] the tridiagonal matrix to be fractured by a number of zeros that occur on the subdiagonal: if the multiplicity of an eigenvalue is p, then there must be at least (p - 1) vanishing subdiagonal elements, so that at least p separated matrices occur along the diagonal. The following tridiagonal matrix emerges after application of TRED2 to matrix (17d) of Section 2:

In all of the examples that we have seen, the number of subdiagonal zeros is (p - 1), where $p = \max[\mathbf{r}, (\mathbf{n} - \mathbf{r})]$; the separated matrices are always 2×2 or 1×1 , and the number of 2×2 matrices is min $[\mathbf{r}, (\mathbf{n} - \mathbf{r})]$.

These tridiagonal matrices are diagonalized by the routine IMTQL2 [16], which is based on the QR algorithm [13]. Each 2×2 matrix is reduced to the form

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}. \tag{A.24}$$

Final eigenvectors are columns of the accumulated product of the successive orthogonal transformations performed in TRED2 and IMTQL2. The combined package yields a complete set of orthonormal eigenvectors for the subspaces corresponding to both eigenvalues +1 and 0, but only those belonging to the subspace of +1 relate to the present problem.

APPENDIX B: PROPERTIES OF $d_{K'K}^J(\pi/2)$

In the construction of "cubic harmonics" or SAF's, the matrix elements of the finite rotations [9, 28] for an angle $\pi/2$ play an essential role. In the present work, as in [5], we follow the phase convention of [28], namely,

$$d_{K'K}^{J}(\beta)$$
 (here and in [28]) = $(-1)^{K+K'} d_{K'K}^{J}(\beta)$ [9]. (B.1)

From known recursion formulas for the hypergeometric functions [29], a variety of useful recursion relations can be found [5, 30–35] for the $d'_{K'K}(\beta)$, because these are

simply related to the Jacobi polynomials [9]. For $\beta = \pi/2$, [5, Eq. (64)] (also, see [32, Eq. (A.5.10)]) reduces to a particularly convenient recursion for numerical calculation of $d_{K'K}^J$ with J fixed [36]:

$$(J+K+1)^{1/2}(J-K)^{1/2}d^J_{K'(K+1)} = -2K'd^J_{K'K} -(J-K+1)^{1/2}(J+K)^{1/2}d^J_{K'(K-1)}.$$
(B.2)

With this recursion, it is not difficult to calculate the $d_{K'K}^J$ for high J. For example, we have calculated all the values of $d_{K'K}^J(\pi/2)$ for $0 \le J \le 100$ in 4.6 and 8.8 sec using single- and double-precision arithmetic, respectively, on a CDC 7600 computer. The values in these two calculations agreed to at least 11 significant figures.

In order to implement Eq. (B.2), certain starting values and symmetry relations are important:

$$d_{JJ}^{J} = 1/2^{J},$$
 (B.3)

$$d_{J-1,J}^J = (2J)^{1/2}/2^J, \tag{B.4}$$

$$d_{J-1,J-1}^J = -(J-1)/2^{J-1},$$
 (B.5)

and

$$d_{K'K}^{J}(\beta) = (-1)^{K-K'} d_{KK'}^{J}(\beta), \qquad (B.6)$$

together with Eq. (B.2) are sufficient to generate all the $d'_{K'K}$ for a given J. The number of explicit calculations may be reduced further by means of the relations

$$d^{J}_{-K'K} = (-1)^{J-K} d^{J}_{K'K}$$
(B.7)

and

$$d^{J}_{-K'-K}(\beta) = (-1)^{K'-K} d^{J}_{K'K}(\beta).$$
(B.8)

Equations (B.6) and (B.8) are from [28], Eq. (B.7) is from [9], and Eqs. (B.3)–(B.5) follow readily from formulas in [9].

In our study of the numerical algebra of the Cholesky factorization, we have found that certain inequalities for the d's must exist. These inequalities will be presented and discussed in future work.

ACKNOWLEDGMENTS

We are grateful to several individuals for their assistance during the course of this work: Professor W. H. Shaffer (Department of Physics, Ohio State University) for suggesting our use of the simplifying notation of ϵ_x , ϵ_y , and ϵ_z , and for checking the irreps of the O_h point group; Drs. B. L. Buzbee and T. L. Jordan (Computer Division, Los Alamos Scientific Laboratory) and Professor G. H. Golub (Department of Mathematics, Stanford University) for several helpful discussions regarding the decomposition of symmetric idempotent matrices; and Professor C. B. Moler (Department of

Mathematics, University of New Mexico) for the routine that performs symmetric elimination with pivoting, and for valuable assistance in the comparative analysis of the different methods of decomposition of matrices.

References

- 1. H. BETHE, Ann. Phys. Leipzig 3 (1929), 133; F. C. VON DER LAGE AND H. BETHE, Phys. Rev. 71 (1947), 612.
- 2. H. A. JAHN, Proc. Roy. Soc. London Ser. A 168 (1938), 469, 495.
- 3. K. T. HECHT, J. Mol. Spectrosc. 5 (1960), 355.
- J. MORET-BAILLY, Cah. Phys. 15 (1961), 237; J. Mol. Spectrosc. 15 (1965), 344; J. MORET-BAILLY, L. GAUTIER, AND J. MONTAGUTELLI, J. Mol. Spectrosc. 15 (1965), 355.
- 5. K. FOX AND I. OZIER, J. Chem. Phys. 52 (1970), 5044. Following the notation in [5], we attach one of the literal subscripts x, y, or z, to specify the partner-function subspace (i.e., the row of the irreducible representation) for both the F_1 and the F_2 symmetry species, for molecules of either T_d or O_h structure. In [2], x, y, and z are attached only to F_2 (the species of translations in point group T_d), while ξ , η , and ζ are attached only to F_1 (the species of rotations in T_d). The present convention eliminates confusion because translations and rotations belong, respectively, to species F_{1u} and F_{1g} in the O_h point group.
- 6. A. S. HOUSEHOLDER AND K. FOX, J. Comput. Phys. 8 (1971), 292.
- 7. B. J. KROHN AND K. FOX, Program No. 347, Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, Indiana 47401. This computer program calculates complete orthonormal sets of SAF's, in double precision; also, it calculates values of $d_{K'K}^{T}(\pi/2)$, in double precision, using Eqs. (B.2)-(B.8) in Appendix B. The program is available for use on CDC and IBM computers.
- 8a. K. Fox, B. J. KROHN, AND W. H. SHAFFER, Cubic and Quartic Anharmonic Potential Energy Functions for Octahedral XY₆ Molecules, submitted for publication.
- 8b. W. H. SHAFFER, H. H. NIELSEN, AND L. H. THOMAS, Phys. Rev. 36 (1939), 895.
 - Press, Princeton, N.J., 1968.
- 10. W. C. MAGUIRE, Math. Comput. 30 (1976), 667.
- This paper consistently uses the notation of Jahn [2, 3, 5] for symmetry species A₁, A₂, (E_e, E_f), F_{1z}, and F_{2z}. However, the computer program [7] gives the SAF's in the notation of Moret-Bailly [4]. The correspondence between these two notations is as follows [the notation of E and E* was introduced by J. C. HILICO, Cah. Phys. 19 (1965), 328]:

	Jahn	Moret-Bailly	
		Even J	Odd J
-	<i>A</i> ₁		A2
	A_2	A_2	A_1
	E,	E^*	E
	E_{f}	E	E*
	F_{1z}	F_{1z}	F_{2z}
	F	F.,	F.,

The results of [5], which gives SAF's for both the E_e and E_f subspaces, together with the notation of [4] for E alone, imply that the SAF's for species A_1 , E, and F_1 are linear combinations of Y_K^J with $K = 0, \pm 4, \pm 8, ...$; for A_2 , E^* , and F_2 , with $K = \pm 2, \pm 6, \pm 10, ...$

12. L. FOX, H. D. HUSKEY, AND J. H. WILKINSON, Quart. J. Mech. Appl. Math. 1 (1948), 149.

- 13. J. H. WILKINSON, "The Algebraic Eigenvalue Problem," Clarendon, Oxford, 1965. Specialized topics are discussed as follows: Cholesky factorization and matrices that are not positive definite, p. 230, ff; the relationship between the multiplicity of an eigenvalue and the number of vanishing subdiagonal elements in a tridiagonal matrix, p. 300; the QR algorithm, Chap. 8.
- 14. C. B. MOLER AND G. W. STEWART, On the Householder-Fox Algorithm for Decomposing a Projection, J. Comput. Phys., to be published.
- 15. C. B. MOLER, private communication.
- B. T. SMITH, J. M. BOYLE, B. S. GARBOW, Y. IKEBE, V. C. KLEMA, AND C. B. MOLER, "Matrix Eigenvalue Routines—EISPACK Guide," Lecture Notes in Computer Science, Vol. 6, Springer– Verlag, New York, 1974.
- 17. K. Fox, *in* "Molecular Spectroscopy: Modern Research" (K. Narahari Rao and C. W. Mathews, Eds.), Academic Press, New York, 1972.
- 18. W. C. MAGUIRE AND K. FOX, Bull. Amer. Astron. Soc. 8 (1976), 471.
- 19. F. MICHELOT, J. MORET-BAILLY, AND K. FOX, J. Chem. Phys. 60 (1974), 2606, 2610.
- M. DANG-NHU, private communication to the authors of Ref. [18]; also, see J. C. HILICO AND M. DANG-NHU, J. Phys. (Paris) 35 (1974), 527.
- J. P. ALDRIDGE, H. FILIP, H. FLICKER, R. F. HOLLAND, R. S. MCDOWELL, N. G. NERESEN, AND K. Fox. J. Mol. Spectrosc. 58 (1975), 165.
- E. D. HINKLEY, Appl. Phys. Lett. 16 (1970), 351; E. D. HINKLEY AND P. L. KELLEY, Science 171 (1971), 635.
- 23. R. S. McDowell, H. W. Galbraith, B. J. KROHN, C. D. CANTRELL, AND E. D. HINKLEY, Opt. Commun. 17 (1976), 178.
- 24. H. W. GALBRAITH, R. S. MCDOWELL, AND C. D. CANTRELL, Methods of rotational assignment of the P and R branches of the ν_3 fundamental band of SF_6 , in preparation.
- 25. B. J. KROHN, "Diagonal $F^{(4)}$ and $F^{(6)}$ Coefficients for Spherical-Top Molecules in Angular-Momentum States up to J = 100," Los Alamos Scientific Laboratory report LA-6554-MS, October, 1976.
- 26. K. Fox, H. W. GALBRAITH, B. J. KROHN, AND J. D. LOUCK, Phys. Rev. A 15 (1977), 1363.
- 27. K. Fox, J. P. ALDRIDGE, H. J. FLICKER, R. F. HOLLAND, R. S. MCDOWELL, AND N. G. NERESON, 30th Symposium on Molecular Structure and Spectroscopy, Ohio State University, Columbus, Ohio, 16–20 June 1975, Abstract Σ 4.
- 28. M. E. Rose, "Elementary Theory of Angular Momentum," Wiley, New York, 1957.
- 29. See, for example, A. ABRAMOVITZ AND I. A. STEGUN (Eds.), Nat. Bur. Standards Appl. Math. Ser. 55 (1964).
- 30. I. M. GELFAND AND Z. Y. SHAPIRO, Amer. Math. Soc. Transl. 2 (1956), 207.
- 31. U. FANO AND G. RACAH, "Irreducible Tensorial Sets," Academic Press, New York, 1959.
- 32. K. Fox, Ph. D. Thesis, Univ. of Michigan, 1961 (University Microfilms Order No. 62-3240).
- 33. S. L. ALTMANN AND C. J. BRADLEY, Philos. Trans. Roy. Soc. London Ser. A 255 (1962), 193.
- 34. R. B. WALKER, J. Comput. Phys. 17 (1975), 437.
- 35. K. Fox, J. Comput. Phys. 24 (1977), 455.
- 36. For brevity, when (and only when) $\beta = \pi/2$, we shall omit the angle in $d_{K'K}^J(\beta)$; that is, $d_{K'K}^J \equiv d_{K'K}^J(\pi/2)$.