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Symmetry-adapted functions (orthonormal linear combinations of angular-momentum
eigenfunctions belonging to particular symmetry species) for the T; and O, point groups
have been computed for J < 100 using an algorithm of Fox and Ozier, and Cholesky
factorization of idempotent matrices. The results of Cholesky factorization are compared
with those of both symmetric elimination with pivoting and an EISPACK diagonalization
routine.

1. INTRODUCTION

The knowledge of linear combinations of angular-momentum eigenfunctions which
transform according to the irreducible representations (irrep’s) of the cubic (tetra-
hedral T, and octahedral O;) point groups is becoming increasingly important.
These symmetry-adapted functions (SAF’s) were constructed for 7; by Bethe [1],
Jahn [2], Hecht [3], and Moret-Bailly et al. {4] for values of the angular-momentum
quantum number J < 21. Fox and Ozier [5] developed an explicit algorithm for
constructing 7, harmonics for arbitrary J. Jn that procedure the SAF’s are among
the eigenvectors of symmetric idempotent projection-operator matrices. Application
of Cholesky factorization to construct a complete set of orthonormal eigenvectors
was discussed by Householder and Fox [6]. The present work expands the theoretical
developments of Fox and Ozier [5] to incorporate the O point group. The methods
of [5, 6] are impiemented to compute SAF’s, or “cubic harmonics,” for J up to 100 [7].

The group-theoretical approach here is in the same spirit as that used earlier [5].
Conventions for labeling coordinate systems, variables, group representations, etc.,
are identical to those in [5] unless explicitly stated otherwise.
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TABLE I

Symmetry Operations of the Point Group O, with Corresponding Permutations of the Group S(6)
and Euler Angles
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388 FOX AND KROHN

0,, is the symmetry group for molecules like SF,, just as T, is for molecules like
CH, . The symmetry operations of O, are listed in Table I, which corresponds to
[5, Table I]. The proper rotations are numbered 1-24 and are denoted here by
{S;, 1 <j < 24}; the improper operations are numbered 25-48, and are {IS; = S,_,, ,
1 < j < 24}, where [ is the inversion. Those operations common to both 0, and 7,
are {S;,1 <j <12 and 37 < j < 48}. In Table I all of these operations for O,
appear in the same order as those for 7, (in {5, Table I]), except S,, and S, here are
interchanged. The purpose of this interchange is to cause the three sequences of
operations, 37-40 (where the x-direction is unique), 41-44 (where y is unique), and
45-48 (where z is unique) to be completely analogous to each other in both Tables I
and III. (The sequences 13-16, 17-20, and 21-24 are also completely analogous.)

/’ ?°
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4 et 3 .
R o R e e
|
i L
xl// .6‘

Fic. 1. Orientation of a regular tetrahedron with geometric center at the origin of Cartesian
axes (X', Y’, Z), and vertices at positions a, b, ¢, and d (analogous to positions 1, 2, 3, and 4, respec-
tively, in [5, Fig. 1]); labels 1-6 here refer to B positions in an octahedral AB, array, with A4 at the
geometric center.

There is a slight change of notation between Fig. | and Table I here, and [5, Fig. I,
Table I]. Our labels a, b, ¢, d refer to the main diagonals passing through the vertices
at positions 1, 2, 3, 4, respectively, in [S, Fig. 1]. The correspondence between the
symbols for operations is as follows: Cy; = C;,, C3s = Cy, etc., and o453 = 0, ,
Og4 = 03y, etc. (In the c-operations the subscripts define the plane of reflection.)
A new notation for the C, operations {S;;j = 13, 14, 17, 18,21, 22} has been
introduced: the axis of rotation is in a plane specified by the two literal subscripts.
For the symbols with a single-prime superscript, the axis of rotation is in the first and
third quadrants of that plane; for those with a double-prime superscript the axis of
rotation is in the second and fourth quadrants. The elements of the permutation
group S(6) corresponding to O, are listed explicitly. The Euler angles measured in the
molecule-fixed frame (MFF) are specified as in [5].

For completeness we tabulate the operations for the cubic subgroups of O, . In
Table II the sets of operations in each subgroup are indicated by a /.

Before turning to the actual calculation of SAF’s for O, , we wish to consider the
matrix representations of T, and O, . In particular we demonstrate a generalization
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TABLE 11
Symmetry Operations in Cubic Point Groups; Presence is Denoted by 1/

Operations T T, Ta (0] O,

&1 = {81 5y St} v V4 v Vv V4

& == {813 50rr Sea} v v

I Fy = {825 500 Sse} vV v

SIF s = {83 0 Sts} v vV
TABLE III

Irreducible Representation Matrices®? of O,

25 26 27 28 29 30 31 32 33 34 35 36

Ay, 1 . )
Asq 1 . 1
- o) (e O (e 29™)

F, Xxyz x¥Z XyZ XYz iVZx YzX YZR vYZx i ZRY ZRYy 2x¥ Zxy
F, XYz XxYZ XyZ XYz :VZx YzZX YZR yzZx i ZXY 2ZRy 2Zx¥V ZzZxy

13 14 15 16 17 18 19 20 12 22 23 24
37 38 39 40 41 42 43 44 45 46 47 48

Ay, 1 1 1

Az, -1 —1 1

E (cos 2¢, sin 2e, ) ‘ (cos 2¢, sin 2e, ) (cos 2¢, sin 2e, )
¢ sin 2e, —cos 2, sin 2¢, —cos 2, sin2, —cos 2¢,

F, Xzy XZ¥ Xxz¥ XxZy zZPx 29X Zvyx zYX | YxZ YXZ YXzZ Vxz
F, X2Y XxZy X2y Xz¥ ZYX zyx zZPR% 2%x P8z vxz ¥Px72 v%Z

¢ Irrep’s for the five u-species are given as follows. For proper operations (1-24) the representa-
tions are identical to these matrices. For inversion operations (25-48) the representations are the
negatives of these matrices.

® Primes are eliminated from X, Y, and Z for convenience, but their meaning is the same as X”, Y7,
and Z’ in [5, Table II).
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of {5, Table I1]. These results will be useful, not only in the present work, but in future
computations of vibration—rotation spectra of molecules with cubic symmetry.
0, has 10 irreducible representations: A4,,, 4y, E;, Fig, Fog s A1u s Asu s Eu s Fru s
and F,,. The corresponding matrix realizations are presented in Table III. The
enumeration of operations of the group is given in Table I. We have organized the
operations of O, into blocks of eight, instead of into classes, in analogy to [5, Table II].
These arrays, which consist of the invariant subgroup {S; ; j = 1, 2, 3, 4, 25, 26, 27, 28}
and its five cosets, form a compact display and facilitate the calculation of the cubic
harmonics.

Table III contains the representations of type g explicitly. For the u-species the
matrices are identical to those for g for proper operations {S;, 1 < j < 24}, but are
the negatives of those for g for the improper operations, {S;, 25 < j < 48}. In the
threefold representations the meaning of X'Y’Z’, etc., is the same as in [5, Table II].
For example,

-1 0 0
Sy = Sux ~(X'Z'Y') ~ ( 00 *l)s 1)
0 1 0

as in [5, Eq. (9)].

In the present work we have introduced the parameters €, , with « = x, y, or z,
where ¢, is an arbitrary angle, 0 < ¢, << 2w, and where ¢, = ¢, + 37 and ¢, =
€, + 4m. The parameters ¢,, €,, and €, are identical, [8a] respectively, to ¢, €,
and ¢, given by Shaffer, Nielsen, and Thomas [8b] following their Eq. (7). We have
used g, and g4 defined there in terms of the €’s to generate our representation
matrices of species E, and E,,. The E, rep transforms into the E rep of [5] for the choice
€, = 30°. In this case the roles of ¢, and g, in [8] are played by

FUE — (2N2(X"2 cos €, + Y2 oS €, + Z'2 cos €,)

(2a)
= 2-12(X"2 — YY)

and
B = (DX 2sin e, + Y'2sin e, + Z'2sin ¢,)

(2b)
— 6—1/2(X’2 _{__ Y’2 . 22'2),
respectively, in [5]. The choices of basis functions for generating the E reps corre-
spond to e, == 30° in [2, 3, 5], and to €, = 120° in [4]. It appears that e, = 30° is
related to standard forms [9] of the spherical harmonics Y,/ for J = 2. The E rep
in which e, remains arbitrary enjoys a certain amount of flexibility, which will be
utilized in future applications.
We now turn to the correspondence between the projected functions in Oy and 7.
In [5] it was shown that the projected spherical harmonic,

P =0®yy, 3)
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where k indicates the symmetry species and p specifies a row of the representation,
is given by the expression,

‘(Lk) _ (lk/h) Z 'T(k)YIJ(’ , (43)
with
+® = ¥ o(S) DPS)E Dk k(' BY), (4b)
hY

where all symbols are defined in [5, Eqs. (1)-(7)] except that Dy ,(o'"y’) here replaces
Dy (o'B'y") for clarity.

Two properties of the T; and O, point groups are noted for the discussion which
follows:

(i) Each operation in T, corresponds to a pair of operations in O, , such that
one of the pair is identical to the operation in 7, while the other is equivalent to the
first one followed by inversion.

(i) For the operations common to 7; and O, , the reps in T, are identical to
the reps in the g-type species of O, provided that the values of the phase e, for the
reps of species E are coincident.

For the T, point group, Eq. (4b) may be written in the form (see Table II)

(Td)T(k) — Z D(k)(S)tugé'x(a/ﬁ/y/)
Se&,

+ (=) Y D)Lk BY). (52)
Sel,
For the O, point group, Eq. (4b) becomes (see Table II)

Orln?) = 3, [D"S) + (1) DAL Dr( By
Ses;

+ ¥ ¥ + (—1) D*US)E) Drx(@BY),  (5b)

Ses,

where &’ represents one of the symbols 4, , 4, , E, F; , or F, for 0, (as k does for T,)
and the subscript m in k,,” indicates g or u.

Defining
0 if m=g
10 E e
we have, for each proper operation {S; ;j = 1, 2,..., 24} (see Table III)
D(S)f, = D* ()}, (Ta)

and

DEAS)E, = (1D (S)L, (7b)
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where p’ need not equal p. Substitution of Eqgs. (7) into Eq. (Sb) yields

(On)T(km’) — [I + (_1)J+§(m)] [ Z D(k,')(s):w@.ll(lx(allg/y/)

Se;

(=D Y D)L DBy ®)
Sels,
The factor [1 -+ (—1)’+¢'™] permits only projected functions of type g when J is
even and only functions of type u when J is odd.
Comparison of Eqs. (5a) and (8) and use of property (ii) shows that, in either
nonvanishing case (where one has (— 1)’ = (—1)*"} it follows that

(Oh)T(km’) =2 (Td)T(k) when k' = k. 9)

As there are twice as many operations in Oy, as in T, , the expressions for ‘O»f ") and
(Taf® become identical, as do the expressions for “partner” functions. Therefore,
calculations of the SAF’s for T, simultaneously produce the SAF’s for O, . Hence-
forth we shall refer to these SAF’s as ‘“‘cubic harmonics,” and omit the subscripts g
and u in the irreps of O, .

In Section 2 we give the techniques which we have employed in the numerical
computation of the cubic harmonics. The results, their systematics, and comparisons
with respect to different routines for matrix diagonalization are presented in Section 3
and Appendix A. New applications of high-J cubic harmonics are discussed in
Section 4. Finally, some properties of the dg.x(7/2) which are useful in their numerical
and algebraic [10] calculations, are given in Appendix B.

2. TECHNIQUES AND CALCULATIONS

By means of the algorithm of [5], the normalized cubic harmonics have been
constructed [7] to span the subspace [J, k, n] [11] of each symmetry species k and
partner irrep p, for each integral value of J from 0 to 100.

It is appropriate to emphasize here the important consequences [5] of Jahn’s use of
restrictive elementary combinations of spherical harmonics Y,’. First, we have the
definitions [2]

U’ = 27VY ¢ + (=D Y], (10a)
Uy = W =Y’ (10b)

and
Vil = —i@Q VY x — (= DXV, (10c)

where K > 1. Then the molecular Hamiltonian of cubic symmetry does not connect
U-type functions with V-type functions [5]. Second, we may consider separately
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the two sets of functions with K = 0, 4, 8,... and K = 2, 6, 10,..., as these are not
mixed by the Hamiltonian [5].
Starting with one of the four restricted bases,

{Ug', K=0,4,38,...}, {Vi', K=4,8,12,..},

11
(U, K=2,610,.} {Vi K=2610,..1 (ah

one constructs [S] cubic harmonics which belong, not only to a unique symmetry
species, but also to a particular row of the representation. Thus the SAF’s of species E
emerge in two sets denoted by the labels (E, , Ey), and those of species F, and F, are
produced in three sets, (Fy, , Fi, , Fy,) and (F,, , Fy, , F,). Each SAF in the E,-set has
a unique partner in E; ; each SAF in the F,-set has a unique partner in each of Fy,
and Fi, (similarly for F,,). Furthermore, the two sets of SAF’s for species E are
mutually orthogonal, as are the three sets of SAF’s for species F; and F,, and each
set forms an invariant subspace with respect to the Hamiltonian (e.g., wavefunctions
belonging to F,, do not mix with those belonging to F;,). Finally, in the present
procedure, the SAF’s belonging to the subspaces Fy, , Fy, (Fs, , Fs,) are constructed
from either U,”’s or Vi’’s with odd values of K as determined by application of the
transfer operator [5] to the even-K SAF’s from the subspace F,, (Fy,).

All of the cubic harmonics calculated here, except those belonging to irreps Fi,
and F,, , require [5] knowledge of the functions dy.x(B) evaluated at B = =/2; their
computation is discussed in Appendix B. In particular, for irreps 4, , 4,, and E,*
one constructs symmetric idempotent matrices of the projection operators according
to [S, Egs. (53)—(58)]. The eigenvalues of these matrices are either +1 or 0 (because
of idempotence). The eigenvectors belonging to the subspace of the degenerate
eigenvalue +1 consist of the coefficients ¢;; which define the SAF’s that span the
subspace [/, &, p]:

O =Y cfUy  or O =Y vy (12)
K K
In general, when the SAF’s are not subjected to further conditions, they are not
unique. However, any two sets of orthonormal SAF’s that span the same space
[J, k, p] are related by a unitary transformation.

In the present work, the idempotent matrices were decomposed by Cholesky
factorization [6, 12]. If A4 is a real symmetric positive definite matrix, then its Cholesky
factors [12] determined without pivoting are triangular matrices which satisfy the
equation

A=A" = LL7, (13)

where L is a lower triangular matrix. If 4 is n X n and, ¢.g., n = 4 with

an 4n a; ag L 0 0 O
Aoy Goy Ay a4 L, | 0 0

4= |9 G2 G Gp and L& ! 14
a3 43 Az dgg I Iy I3z 0O (14)

Ay Gy Qg3 Ay Iy le Ly ln
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then one has [12]

Iy = (@)

Iy = an/hy lps = (ag — 1221)1/2
Iy = ag/ly lgy = (ags — Inlo)/bs lyy = (a5 — 1321 — 1322) (15)
Iy = ay/ly Ly = (ase — lular)/le Ly = (ay3 — lnlsy — Lals)/lss

lyy = Qa0 — 1421 - 1422 — 1423)1/2-

In our work, however, each matrix is not positive definite, but idempotent (and,
therefore, positive semidefinite), whose rank r is the multiplicity of the eigenvalue +-1.
Consequently [13, 14] one expects the above procedure to be inapplicable because it
does not involve a search for the largest diagonal element and an interchange of
appropriate rows and columns before each step: one might encounter a singularity
due to a zero diagonal element in L or a column that is linearly dependent on previous
columns (or nearly so), before reaching the end of r “good columns.” However,
the difficulty appears to be avoidable in this problem if we arrange our matrices in
a particular way (see Section 3), so that we are able to perform the above Cholesky
factorization without pivoting. We have not fully investigated the reasons why pivoting
is not necessary. Moler and Stewart [14] have analyzed the effects of roundoff error
in this algorithm, and have shown that if the diagonal elements of the computed L
are not too small, then the columns of L must be close to orthogonal and 4L must be
close to L. (Specific examples and further discussion are given in Section 3.)

The above procedure yields a trapezoidal matrix L of r columns with r < m,
because /.1 141 = 0. The r columns thus determined comprise all of the eigenvectors
of A with eigenvalue +1, and they are orthonormal [6]. Four equations which apply
to A and its eigenvectors are

A% = A, (16a)
A=LIL", (16b)
AL = L, (16¢)
and
LTL =1, (16d)

where Egs. (16c) and (16d) are implied by Eqs. (16a) and (16b); here Iis the r X r
identity matrix.

The following symmetric idempotent matrices have been constructed from [5,
Eqgs. (53)—(58)]; their eigenvectors, given below, corresponding to the eigenvalue +1,
are SAF’s for their respective subspaces [11]:

K= 2 6

K' =2 (5/16 551/2/16)

6 \5512/16 11/16 [/ =6, EJ], (17a)
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K= 4 8
K =4 17/24 —(7 - 17)*12/24 .
8 (_(7 - 17)112/24 7/24 ) V=9, 4,], (17b)
K= 0 4 8
K=0 33/64 (7 - 1142332 (5 - 11 - 13)1/2/64
4 ( (7 - 11)1/3/32 7/48 S-7- 13)1/2/96) [/ =8,4,], (17c)
8 \(5 -11-13)172/64 (57 - 13)1/2/96 65/192
K= 4 8 12 16 20

K= 4 0.507050 —0.240371 —0.175644  0.066790 0.396056
8 | —0.240371 0.662923 0.263113 —0.183236 0.250746

12 | —0.175644 0.263113 0.384201 0.366114 0.049718

16 0.066790 —0.183236 0.366114 0.779134 0.002895

20 0.396056 0.250746  0.049718 0.002895 0.666692

J=21,E)}; (17d)

Rank = No.
Example Subspace Order of SAF’s SAF’s
(17a) [6, E.] 2 1 (5/16)2/2 U, + (11/16)1/2 Ut
(176) 9, 4,] 2 1 —(1724)12 V8 4 (7/24)1 /2 V8
(17¢) [8, 4,] 3 1 (33/64)12U 8 + (T/48)172U,8 + (65/192)1/12U 8
(17d) [21,E] 5 3 See Eqgs. (18) and (19)

In examples (17a)~(17c) where the rank is 1, each SAF is unique and is in agreement
with the results of Jahn [2] and Moret-Bailly {4], except possibly for an overall phase
factor. When the rank exceeds 1, the eigenvectors are not unique. In example (17d),
Cholesky factorization yields the (orthonormal) eigenvectors

OB — (.712074 V2 — 0.337565 V2 — 0.246666 V2

+ 0.093797 V35 + 0.556200 Vs, (18a)

D5 = 0.740927 VE* + 0.242733 V3 — 0.204573 V3 (18b)
+ 0.591826 V3,
D31+F = 0.514235 VI 4 0.853514 V3 + 0.084120 V2. (18¢c)

On the other hand, reflection of the matrix (17d) about the second main diagonal
(i.e., the diagonal running from the lower left to the upper right), and Cholesky
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factorization of the result yields the following set of orthonormal eigenvectors:

OF = 0.816512 V3 + 0.003546 V2 - 0.060890 V2
+ 0.307094 V2 -+ 0.485058 V2, (19a)

O3F = 0.882679 Vi3 + 0.414531 V3 — 0.208825 V3
+ 0.073719 V7, (19b)

@2-F — 0.456790 V2 + 0.724575 V' — 0.516076 V2 (19¢)

As these two sets of orthonormal basis vectors in Eqs. (18) and (19) span the same
subspace, they must be related by a unitary transformation. In fact, we have expiicitly
that

@, 0.681190 0724822 0.103023, /6,
)= o}

(@z 0.103527 —0.234676 0.966545 (O,
@,

—0.724751 0.647735 0.234898/ \@),
We also have verified that all of the matrices and SAF’s of examples (17a)-(17d)
satisfy the matrix equations (16a)-(16d).

3. RESULTS, SYSTEMATICS, AND COMPARISONS WITH OTHER METHODS

A computer program is available [7] which calculates SAF’s for arbitrary values of
J, symmetry species, and partners. It incorporates the recursion formula for dg. x(7/2)
and the algorithm for cubic harmonics of Fox and Ozier [5], and Cholesky decom-
position [6] (as discussed above) of the idempotent matrices generated by the algorithm
for species 4, , A, , and E, . Presented as an example in Table IV are all of the SAF’s
computed for each subspace associated with J = 14, and in Table V are two sets of
SAF’s belonging to the subspace [J = 100, 4,], as determined in double precision
(relative accuracy = 5.0 X 10-%) on the CDC 6600 and 7600 computers at Los
Alamos. Table V gives the SAF’s for the two “arrangements” of the same idempotent
matrix, one with the lowest value of X in the first column and the other with the
highest value of K in the first column; the two sets are analogous, respectively, to the
®; and the O, of the previous Section.

It is evident that at high J the coefficients c;x in a particular SAF generally do not all
have the same magnitude, but suffer extreme variations, especially when the ‘‘high-K”’
SAF’s are determined first; solutions with such peculiarities are found to obey Egs.
(16¢,d) satisfactorily in double precision. However, the “arrangement™ of the matrix
(with respect to reflection across the second main diagonal as discussed in Section 2)
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does affect crucially, as follows, the accuracy of the calculated SAF’s with J near 100
(for J even or odd):

Arr. High Kin Low K in
Spec. upper left upper left
Ay, Ay 26 significant Poor
figures
E, Poor 26 significant
figures

This diagram indicates several facts. First, one can use Cholesky factorization without
pivoting to obtain a set of SAF’s for each value of J, and symmetry species 4, , 4,,
and FE,, because at least one arrangement of each idempotent matrix always yields
a basis set of SAF’s with very little loss of accuracy. Second, despite the fact that
Cholesky factorization without pivoting cannot be applied generally to positive
semidefinite matrices [13], we have found specific examples of such matrices that can
be so decomposed. Our matrices are idempotent, constructed from known formulas
[5), and “arranged” as specified above. Third, the deficiency due to the absence of
pivoting is manifest in the excessive losses of accuracy that occur during decomposition
of our matrices in their “poor arrangements.” More specifically, we calculated the
inner product (®; - ®;) for each pair of SAF’s to test their orthonormality (Eq. (16d)),
and the vector difference X; = (4®; — ®,) to verify that each SAF is an eigenvector
of A corresponding to the eigenvalue 41 (Eq. (16¢)). For the “poorly arranged”
matrices we found that, as ®; and ®; were generated progressively later during the
Cholesky factorization (i.e., as i and j approached r, the rank of the matrix), the values
of (®; - ®,;) (for i 5 j), and of the components of X;, increased rapidly in size and
indicated unacceptable magnifications of round-off error. For J = 100, in a “poorly
arranged” matrix, typical indications for the SAF’s ®,_; and ®,, determined last,
are that [(®,_; - ®,)| is about 10-2%-10-"7, that 1 — &, - ®, is about 1016, and that
components of X, can be as large as 10-%! in magnitude. (This to be compared with
the observations that |(®,_; - ®,)] and components of X, are about 10-%¢ for the
“good arrangements.””) Although such losses of accuracy are not critical to double-
precision computations, they can alter most, if not all, of the significant figures in
single precision,

Other methods of deiimpoiiﬂon of tie ldiﬁiiiiii Eiiiiii ﬁeri tested to compare

CSKy TAclorization. A toutine employing Symmetric elmination of rows and "

columns, including a search for the largest diagonal element and pivoting before each
elimination, was written by Moler [15] for our use. We also have employed the
EISPACK routines [16] “TRED2” and “IMTQL2” which contain the intermediate
step of tridiagonalization before diagonalization. These methods are discussed in
Appendix A, and the results are compared in Table VI. We attribute the short
execution times for Cholesky factorization to the absence of pivoting; because this
absence does not cause appreciable extra losses in accuracy, we surmise that the
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“good arrangements” of the idempotent matrices are already nearly optimally
pivoted. The iterative procedure of “IMTQL2" gains still more accuracy, but requires
considerably more time.

TABLE VI

Comparative Statistics for Three Methods of Decomposition of Symmetric Idempotent Matrices
during Computation of SAF’s for J = 100

Symmetric Tridiagonalization
Cholesky factorization elimination (QR) and
without pivoting® with pivoting diagonalization

Test A A E. A A, E A4 A, E
Time of execution® (msec) 7.1 6.1 9.7 220 192 258 2489 2182 169.3

Max[l — ®; - ®,] x 102 ° 140. 170. 320. 200. 270. 190. 23, 19. 40.
Max[| @, - ®;1] x 10% ¢ 19. 17. 50. 58. 76. 72. 2.3 1.8 2.9

Max[| A®; — ®;|] x 1028 ¢4 79. 63. 80. 73. 88. 61, 43, 35, 25.

¢ The “good arrangement” of each idempotent matrix, as discussed in Section 3, is always taken.

¢ Each time interval represents an average value for 10 runs through the routine that decomposes
the matrix; all tests of the time were made on the same CDC 7600 computer at LASL.

¢ It is important to note that these entries indicate roundoff errors that accumulate both during
computation of the eigenvectors ®, and during the arithmetic required to conduct the tests.

4 These values indicate the absolute value of the largest component that occurs in all of the vector
differences in each subspace.

4. AppPLICATIONS OF HIGH-J SAF’S

Methane is a significant constituent of the atmospheres of the outer planets (AOP),
and the stratosphere of the Earth [17]. Enormous quantities of CH, present in AOP
suggest that absorption features arising from vibration—rotation transitions in the
infrared will be important [18] out to J near 30 for the strong fundamentals v, and v, .
Appropriate laboratory spectra, requiring very long effective absorption paths and
low temperatures, are not yet available. Consequently, spectral line positions and
intensities have been calculated, and corresponding planetary spectra have been
synthesized [18] for 0 <{ J < 30 in v; and v, of CH, . In that work, the theoretical
formulation of Moret-Bailly et al. [4, 19] was applied, and tetrahedral splittings were
computed using Dang-Nhu’s program [20] for F-coefficients.

Vibration-rotation spectra of molecules like SF,; with octahedral symmetry appear
to be similar to corresponding spectra of tetrahedral molecules like CH,. The
theoretical bases for these similarities are well established [4, 19]. Recently, an
ultra-high resolution spectrum of the infrared-active fundamental v; of SF, was

581/25/4~7



402 FOX AND KROHN

obtained [21], and a preliminary analysis was made [21] for 0 < J < 20. Similar

— spectra, of even higher resolution-[22], were—unraveled—{23,24] to—determine—the
quantum numbers of absorption transitions in SF; which corresponds to emission
in the 10.6-um region by a CO, laser. Infrared transitions involving J < 60 in SF,
were identified in this application.

From a purely abstract viewpoint, it is intriguing to study the systematics of the
coefficients [4] F{{;;" used in analyses of high-resolution vibration-rotation spectra
of spherical-top molecules. These coefficients have been calculated for 2 << J < 100
[25] and remarkable regularities have been found [26). This problem is part of an
extensive theoretical program to analyze ultra-high resolution infrared spectra of

molecules like SF; and CH, [27].

APPENDIX A: METHODS, OTHER THAN CHOLESKY FACTORIZATION, FOR DETERMINING
THE EIGENVECTORS OF A SYMMETRIC IDEMPOTENT MATRIX

1. Symmetric Elimination with Pivoting

The following procedure (and its implementation), written by Moler [15], permits
a search for the largest diagonal element of 4 (and an interchange of rows and
columns) before each elimination of a row and column, so that round-off error [14]
is acceptably small. The matrix remains symmetric after each complete elimination.

Let A be a symmetric idempotent matrix and let ¥ be a nonsingular matrix such
that

YTAY = D, (A.1)

where D is a diagonal matrix with no negative elements. Then

A= ((YH1DY ! = (YY) DY (A2)
or
A=ZLT, (A3)
where
L = (Y-H)T D12, Ad

As Eq. (A.3) is of the form
PAPT = LIT (A.5)
[6, Eq. (2)], with P == I, it follows that
LTE =1 (A.6)
(i.e., the nonvanishing columns of .# are orthonormal) and that

A =1-Z (A7)
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(i.e., the nonvanishing columns of .# are eigenvectors of A corresponding to the
eigenvalue +1).

We determine Y7 by a succession of r eliminations of a row and a column (where r
is the rank of 4 and n is the order of A4). In matrix notation this is written

Ay = A, (A.8)
Ay = MyAMTY (A.9)
Ay = MuA M, (A.10)
D= A, = M,A,_M> (A.11)
and
YT = MM, - M,, (A.12)

where each M;,1 < j < 1, is selected to eliminate the row and column corresponding
to the largest diagonal element a,,,, in 4;_; . M; is n X n and has the form

1 0 « —ayu/py -+ O
0 1w —dumfapy w0
(:) 0 1 0 (A.13)
0 0 « —aylan, o 1
and M;! has the form
1 0 - apfaum -0
9 1 a2m-/amm 9
00 - 1 0 (A.14)
0 0 - aplay, - 1
Finally, Eq. (A.4) becomes
L = MM MIDY2 (A.15)

For example, applying this procedure to matrix (17d) of Section 2 we find
successively

0.501325 —0.224663 —0.207029 0 0.395808

—0.224663 0.619830 0.349215 0 0.251427

A, = § —0.207029 0.349215 0.212165 0 0.048357
0 0 0 0.779134 0

0.395808 0.251427  0.048357 0 0.666681/ (A.16)

b4



404 FOX AND KROHN

0.266334 —0.373935 —0.235739 0 0
—0.373935 0.525009 0.330978 0 0
A, = | —0. 235739 0.330978 0.208657 0 0 ,
0 0 0.779134 0
0 0 0 0.666681/ (A.17)
and
0 0 0 0 0
0 0.525009 0 0 0
Ay = 0 0 0 0 0 ,
0 0 0 0.779134 0
0 0 0 0 0.666681/ (A.18)
with
1 0 0 --0.085724 0
010 0.235179 0
M, =10 0 1 —0.469899 0|, (A.19)
0 00 1 0
0 0 0 —0.003716 1
1 0 0 0 —0.593699
01 0 0 —0377132
M,=10 0 1 0 —0.0725341}, (A.20)
0 0 01 0
00 0O 1
1 0.712245 0 0 O
0 1 0 00
M,=§0 —0630423 1 0 0}, (A.21)
0 0 010
0 0 0 01
and
(K'=4) /0 —0516075 0 0.075667 0.484758
® Jo 0.724575 0 —0.207589 0.307930
F = 1210 0.456789 0 0.414773 0.059224 }. (A.22)
[COR KL 0 0 0.882686 0
(20) \0 0 0 0.003280 0.816505

The three nonvanishing columns of % must be related to {®;; i =1, 2, 3} and to
{B; ;i =1, 2,3} of Section 2 by unitary transformations.
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2. Tridiagonalization followed by Diagonalization

The program TRED2 [16] which incorporates a series of orthogonal transformations
according to Householder [16], has been employed to reduce our symmetric idem-
potent matrices to symmetric tridiagonal form. Because the eigenvalues 41 and 0
occur with respective multiplicities r and (n — r) that generally exceed 1, we expect [13]
the tridiagonal matrix to be fractured by a number of zeros that occur on the sub-
diagonal: if the multiplicity of an eigenvalue is p, then there must be at least (p — 1)
vanishing subdiagonal elements, so that at least p separated matrices occur along the
diagonal. The following tridiagonal matrix emerges after application of TRED2 to
matrix (17d) of Section 2:

0.666692 —0.471396 0 0 10

—0471396  0.333308| 0 0 0
—————————————— = — o . (A.23)

0 0 1095502 0205977 0

0 0 10205977 0.044398) 0

B o T

In all of the examples that we have seen, the number of subdiagonal zeros is (p — 1),
where p = max[r, (m — r)]; the separated matrices are always 2 X 2 or 1 X 1, and
the number of 2 X 2 matrices is min[r, (n — r)].

These tridiagonal matrices are diagonalized by the routine IMTQL2 [16], which
is based on the QR algorithm [13]. Each 2 x 2 matrix is reduced to the form

((1) 8). (A.24)

Final eigenvectors are columns of the accumulated product of the successive ortho-
gonal transformations performed in TRED2 and IMTQL2. The combined package
yields a complete set of orthonormal ecigenvectors for the subspaces corresponding
to both eigenvalues +1 and 0, but only those belonging to the subspace of 4-1 relate
to the present problem.

APPENDIX B: PROPERTIES OF dy.x(/2)
In the construction of “cubic harmonics” or SAF’s, the matrix elements of the

finite rotations [9, 28] for an angle /2 play an essential role. In the present work, as
in [5], we follow the phase convention of [28], namely,

dik(B) (bere and in [28]) = (—1)"*dxx(B)  [9). (B.1)

From known recursion formulas for the hypergeometric functions [29], a variety
of useful recursion relations can be found [5, 30-35] for the dy. x(B), because these are
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simply related to the Jacobi polynomials [9]. For B = /2, [5, Eq. (64)] (also, see
[32, Eq. (A.5.10)]) reduces to a particularly convenient recursion for numerical
calculation of dy., with J fixed [36]:

(J + K+ DV*(J — K gs) = —2K'diex
~(J — K+ DT -+ K d ke -

(B.2)

With this recursion, it is not difficult to calculate the d., for high J. For example,
we have calculated all the values of di..(w/2) for 0 < J < 100 in 4.6 and 8.8 sec
using single- and double-precision arithmetic, respectively, on a CDC 7600 computer.
The values in these two calculations agreed to at least 11 significant figures.

In order to implement Eq. (B.2), certain starting values and symmetry relations
are important:

dj, = 1/2’, (B.3)
diy.0 = QIN22, (B.4)
d7 g0 = —(J — D27, (B.5)
and
dix(B) = (— 1 'dkx(B), (B.6)

together with Eq. (B.2) are sufficient to generate all the d., for a given J. The number
of explicit calculations may be reduced further by means of the relations

d g = (—1)"Fdpx (B.7)
and

& g _x(B) = (— 1) 5d%x(B). (B.8)

Equations (B.6) and (B.8) are from [28], Eq. (B.7) is from [9], and Egs. (B.3)~(B.5)
follow readily from formulas in [9].

In our study of the numerical algebra of the Cholesky factorization, we have found
that certain inequalities for the d’s must exist. These inequalities will be presented and
discussed in future work.
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